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Abstract:  Bearing faults in machinery are among the most critical faults that require 
attention by maintenance personnel at early stages of fault initiation. In many cases it is 
difficult to directly and accurately identify the fault type and its extent under varying 
operating conditions. This work demonstrates a novel procedure for bearing fault detection 
and identification in an experimental set-up. Three seeded faults, in the rotating machinery 
supported by the test ball bearing, include inner race fault, outer race fault and one roller 
fault. The rotor is run at different speeds and with small level of rotating mass unbalance. 
Accelerometer based vibration signals are analyzed for the different bearing faults’ 
signatures using statistical features, frequency spectra and wavelet coefficients. The 
composite differential evolution technique is proposed for parameter estimation when the 
system response is known a-priori. The algorithm is compared to five other differential 
evolution algorithms using conventional crossover and mutation operators. The objective 
is to correlate bearing faults to the extracted vibration features. The results of this analysis 
will be extended for applications in real time bearing condition monitoring system. 
  
Key words: Bearing fault; Condition monitoring; diagnostics; differential evolution; 
evolutionary algorithms; parameter identification; vibration; wavelets. 

1. INTRODUCTION 

Vibration monitoring in combination with signal processing techniques are effective 
indicators of wear and damage for bearings used in rotating machinery [1]. The capability 
of successfully and accurately detecting the faults and their types at early stages is of great 
importance for the safety and economical aspects in any industrial setup. Therefore, 
predictive condition monitoring procedures are required to extract the features related to 
the faulty element bearing. Several well-established methods have been used for bearing 
fault diagnosis such as spectral analysis, envelop detection, autoregressive modeling, 
cyclostationary analysis, hidden Markov models (HMM), Helbert-Huang transform, and 
wavelet decomposition. Recent research in the field for machine condition and predictive 
health monitoring have concentrated on the development of advanced signal processing 
and machine learning techniques using artificial Intelligence (AI) and fuzzy logic 
algorithms. See for example [2-5] as a sample. El-Thalji and Jantunen [6] provided a 
critical review of the Predictive Health Monitoring methods of the entire defect evolution 
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process i.e. over the whole life time and suggests enhancements for rolling element bearing 
monitoring.  

The purpose of this study is to explore the potentials and capabilities of an artificial 
intelligence algorithm, namely the differential evolution (DE) in developing    machine 
condition monitoring (MCM) methods for ball bearings supporting a rotor-disk system 
under periodic unbalance excitation. Evolutionary algorithms (EA) are metaheuristic 
optimization algorithms that uses mechanisms inspired by processes of biological 
evolution such as reproduction, mutation, recombination and survival of the fittest. They 
are used to successfully solve problems that cannot be efficiently solved by classical 
mathematical polynomial methods. Differential Evolution (DE) is a stochastic population-
based evolutionary algorithm (EA) in which current information at each iteration is used 
to guide the search process. In this work, the vibration signals obtained from an 
experimental setup with faulty bearings, as described in the following section, are 
processed to extract features that form the search landscape for the DE technique.   

2. EXPERIMENTAL SET-UP AND SIGNAL PROCESSING 

A rotor dynamic test rig is used for collecting vibration signals from bearings with seeded 
artificial faults. The schematic of the set-up is shown in Fig. 1. The bearing used for this 
test is a SKF single row radial ball bearing (1.25 inch I.D., 2.5 inch O.D. and 0.625 inch 
width dynamic load capacity of 2160 lbf.) For the normal (no fault) bearing case, balls and 
races are inspected for defects prior to the test runs. In addition, three more bearings were 
artificially introduced with defect points using a small carbide grinding bit such that each 
single bearing will have only one fault. The defects are; inner race, outer race and single 
rolling ball fault. The vibration signals are measured by a PCB accelerometer (model PCB 
302A, with sensitivity 10mV/g, and frequency range of 0.7-10000 Hz, and amplitude range 
of + - 500 g pk). The accelerometer is mounted on the outboard bearing block (Fig. 1). The 
vibration signals are sampled at 10 KHz and then recorded via a National Instruments USB-
6211 data acquisition device. Bearings conditions are evaluated at 10 operating speeds 
from 500 rpm to 1400 rpm with increments of 100rpm. A small rotating unbalance is added 
to the rotor disk to create periodic but speed dependent load on the bearings. The raw time 
vibration signals are analyzed using the Fast Fourier Transform (FFT) and the continuous 
wavelet transform (CWT) techniques. Figures 2 and 3 show sample time signatures and 
their corresponding FFT spectra plots for two fault conditions at different running speeds.  
The time signals are presented by plotting the output of the vibration sensor versus the time 
sample points. Therefore, at a sampling rate of 10,000 s/sec the segments in Figure 2 
represent a duration of 0.5 second. Statistical parameters such as the standard deviation and 
skewness are also computed. Sample statistical features are shown in Figures 4 and 5 for 
all four bearing cases.  
  
Wavelet transform is being increasingly used as a signal processing technique [7]. The 
continuous wavelet transform (CWT) of a signal x(t) is defined as the convolution integral 
of x(t) with a translated and dilated versions of a mother wavelet function. For this work 
and after experimenting with several wavelets, it has been found that the Mexican hat 
wavelet gave acceptable results. Figures 6 and 7show sample wavelet scalograms, over 500 
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data points, for the two bearing fault cases presented in Figures 2 and 3 respectively.  The 
scalogram is a two-dimensional plot of scales (inverse of frequencies) versus time (or in 
this case sample points).       
 

 
 

Figure 1.  Experiment setup for ball bearing fault. 
 

 
 
Figure 2. Vibration signals for (a) 500 rpm _ ball fault, and (b) 800 rpm _ inner race fault. 
 

        
 

Figure 3. FFT Spectra for (a) 500 rpm _ ball fault, and (b) 800 rpm _ inner race fault. 
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Figure 4. Normalized skewness at different speeds in rpm. 
 
 

 

Figure 5. Normalized standard deviation at different speeds in rpm. 

Small scaling parameter values result in narrow windows and serve for precisely localized 
registration of high frequency phenomena. On the other hand, large scaling parameter 
values result in wide windows and serve for the registration of slow phenomena. This way, 
information in the time and frequency domains are represented simultaneously. The 
Mexican hat wavelet, as selected for this investigation, is applied to segments of 5000 data 
points each. The 64 wavelet scales, for each bearing fault type and at each rotating speed, 
are averaged over these 5000 points to represent an additional feature vector.  
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Figure 6. Wavelet scalogram for a bearing with ball fault running at 500 rpm. 

 

Figure 6. Wavelet scalogram for a bearing with inner race fault running at 800 rpm. 

In this paper, we formulate the inverse problem of parameter estimation where the system 
response is known. The parameters are then estimated by solving a minimization problem 
in the response space formulated as,  

 

{ }2ˆmin (Θ) (Θ)f x x = −  ∑                                                           (1)  

 
where (Θ)x is the known set of response for an unknown parameter set Θ and ˆ(Θ)x  is the 
response for the estimated parameter set Θ̂ . The known response is in the form of a finite 
set of either the standard deviation and skewness of the vibration signal, or the normalized 
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averaged FFT bands or the averaged wavelet coefficients. The minimization functional f 
used by the differential evolution algorithm is the average sum of differences between the 
measured response and estimated response over the entire response spectrum. The 
algorithm will guide the search for parameters based on minimizing this functional. The 
composite differential evolution algorithm is used for optimizing the estimated parameters 
in this paper and algorithmic performance is compared to basic versions of the differential 
evolution algorithm.   

3. COMPOSITE DIFFERENTIAL EVOLUTION (DE) 

A potential candidate solution for the parameter estimation problem is encoded in 6-bits – 
the first four encoding for speed (rpm) and the other two bits encoding for the four defect 
types. A population of size N is used and evolved using the differential evolution (DE) 
algorithm till convergence. In this paper, we define convergence when there is no change 
(within a threshold) in the population over two consecutive generations. The DE algorithm 
is an evolutionary algorithm similar to genetic algorithms but instead of using crossover 
and mutation to evolve new population of candidates, uses a simple differential operator to 
create new candidate solutions and employs a one-to-one competition scheme to greedily 
select new candidates [9]. Similar to genetic algorithms, DE is a population-based 
evolution technique where the starting population is randomly populated by potential 
candidate solutions. The next generation is evolved by first creating a trial vector for each 
target vector (from the current population) using a trial vector generation strategy, followed 
by a crossover operation which creates an offspring vector for every target vector that has 
aspects of both the target and the trial vector. The offspring vector replaces the target vector 
in the new generation if it is better (fitter) than the target vector. The performance of the 
differential evolution algorithm depends on the strategy used to generate trial vectors, and 
how well the control parameters are tuned to solve the specific problem. To overcome these 
issues, a variant of the differential evolution algorithm called the composite differential 
evolution (CoDE) algorithm was proposed [10]. It combines three most popular trial vector 
generation strategies with three control parameter settings which are used in a random way 
to generate trial vectors. It has a simple structure and is easy to implement. The three trial 
vector generation strategies used in this paper are: 
 

1) rand/1 
1 2 3.[ ]i r r rυ x F x x= + −   

2) best/1 
1 2.[ ]i best r rυ x F x x= + −                                                                                              (2) 

3) current-to-best/2 
1 2.[ ] .[ ]i i best i r rυ x F x x F x x= + − + − , 

 
where υi is the trial vector and xi is the parent vector. The best candidate solution in a 
generation is labeled xbest and xr1 and xr2 are two randomly selected vectors from the current 
generation. Empirical studies have shown that rand/1 maintains a good diversity, while 
current-to-best/2/bin shows good convergence characteristics. The DE crossover operator 
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implements a discrete (bit-wise) recombination of the trial vector, υi, and the parent vector 
xi to produce offspring x’i as follows: 

 
if and

( )
otherwise

ij r
ij

ij

υ η c j
x g

x
< ∈ℑ

′ = 


                                                                                   (3) 

 
where xij refers to the jth bit of the vector xi, cr is the crossover probability [0-1] and ℑ

is the set of bit indices that will undergo crossover The binomial crossover (/bin) is the 
most widely used method to determine the set ℑwhere crossover points are randomly 
selected from a et of possible crossover points, {1, 2, .. p} where p is the total number of 
bits in genotype definition. The larger the crossover probability cr, the more crossover 
points will be selected. This also means that more elements of the trial vector will be used 
to produce the offspring with fewer bits coming from the parent vector. The binomial 
crossover operator is used with the rand/1 and the best/1 trial vector generation strategies 
but not with the current-to-best/2.  

 
The scaling factor F controls the amplification of the differential variations and controls 

what is akin to a mutation operator in genetic algorithms. The smaller the value of F, the 
smaller the mutation step sizes and the longer it will make the algorithm to converge. On 
the other hand, larger values help in exploration but may cause the algorithm to miss a 
good optima. Therefore, the value of F should be small enough to allow differentials to 
exploit tight spaces in the search space, and large enough to maintain diversity 
(exploration). In CoDE, three control parameter settings are used because of the drawback 
in using fixed values of cr and F throughout the algorithm. In this paper, we use: 

 
1) F = 1.0, cr = 0.1      
2) F = 1.0, cr = 0.9                                                                                                         (4) 
3) F = 0.8, cr = 0.2      
 
These settings are the same as those used in (Refer to CoDE paper). At each generation, 

all three trial vector strategies are used to create new trial vectors followed by offspring 
vectors with a control parameter setting chosen randomly from the three control parameter 
settings. Therefore, three offspring vectors are generated for each target vector. The best 
offspring vector then enters the next generation if it is better than its target vector. In this 
paper we compare the performance of CoDE to that of DE/rand/1/bin and DE/current-to-
best/2 with all three control parameter settings used one at a time. The algorithms will be 
referred to with a number prefix which will correspond to the control parameter setting.  

4. RESULTS 

All the algorithms are run independently for 5 times for population size of N = 10, and 
number of generations till convergence and the quality of the best solution for the median 
run are compared for the different algorithms. The CPU run time on MATLAB 2018 
running on dual core i7 processor is also provided in Tables 1-3 for three different feature 
sets. The feature sets used are (1) statistical feature set with two features – standard 
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deviation and skewness in Table 1, (2) 16 PSD (FFT) bands in Table 2, and (3) 64 wavelet 
coefficients in Table 3. As can be seen CoDE outperforms the other algorithms in both 
convergence characteristics and quality of best solution but takes significantly more run 
time than the basic versions of the DE algorithm. This is because of multiple trail vectors 
generated by for every target vector, followed by a comparison phase. 
 

Table 1: Comparative Performance for the DE algorithms for Statistical Feature Set. 
 

 Convergence 
(# generations) 

% Error CPU 
Runtime (ms) 

CoDE 8 1.924 62 
DE/rand/1/bin/1 16 2.996 27 
DE/rand/1/bin/2 15 3.412 32 
DE/best/1/bin/3 18 2.946 29 
DE/current-to-best/2/1 14 3.218 33 
DE/current-to-best/2/2 14 3.184 34 

 
Table 2: Comparative Performance for the DE algorithms for FFT Coefficients Feature 

Set. 
 

 Convergence 
(# generations) 

% Error CPU 
Runtime (ms) 

CoDE 11 1.247 132 
DE/rand/1/bin/1 18 1.895 58 
DE/rand/1/bin/2 18 2.887 75 
DE/best/1/bin/3 21 1.924 72 
DE/current-to-best/2/1 15 2.560 79 
DE/current-to-best/2/2 17 2.677 82 

 
Table 3: Comparative Performance for the DE algorithms for Wavelet Coefficients 

Feature Set. 
 

 Convergence 
(# generations) 

% Error CPU 
Runtime (ms) 

CoDE 17 4.284 185 
DE/rand/1/bin/1 23 5.778 120 
DE/rand/1/bin/2 24 6.820 127 
DE/best/1/bin/3 20 4.818 121 
DE/current-to-best/2/1 19 5.320 125 
DE/current-to-best/2/2 21 5.320 125 
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Among the feature sets tested, the FFT coefficients feature set (16 features) provided the 
more accurate results than the Wavelet coefficients and the statistical feature set. The 
statistical feature set (2 features) is the smallest feature set but encapsulates enough 
information to provide errors < 5% across all algorithms. The statistical feature set also 
takes the least amount of CPU runtime.     

5. CONCLUSION 

In this paper, a framework for parameter estimation using differential evolution is created.  
The framework is based on features extracted from the rotor system vibration response 
with the purpose of bearing fault identification. It is scalable and can be applied to a larger 
sample size with very little change to the methodology presented in this paper. The 
composite differential evolution algorithm, an adaptive variant of the basic differential 
evolution algorithm is shown to outperform the basic other variants of the algorithm on the 
parameter identification problem.  
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