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Abstract:  Centralized monitoring techniques have become more widely used as business 
demands and budgetary cuts for companies require streamlined operation and 
maintenance of a company’s assets. These assets may be located at a single site where the 
monitoring is taking place, or they may be located all over a state, country or the world. 
Local data collection with consolidated servers allows a central maintenance center to 
pool big data for fleet-wide monitoring purposes. Advanced pattern recognition (APR) 
software solutions have been on the forefront of managing big data for dealing with a 
multitude of assets. APR techniques can provide evidence that a machine is not operating 
as expected, but the condition detected could indicate many possible underlying faults. 
The root cause may still be unknown.  
 
Causal network analysis has been widely used in providing differential diagnosis in the 
medical field when a set of symptoms are known. This method is based on Bayesian 
probability which can handle uncertainty in the data, both input and output, and has a 
good theoretical foundation. This paper discusses methods to utilize pattern anomalies as 
symptoms for a causal network to diagnose asset conditions and to mitigate failures for 
predictive maintenance programs.  
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Introduction: With ever increasing business demands in the energy utilities industry, 
many organizations look for methods to maximize departmental efficiency. Rather than 
depend solely on crews at a single location, power generation companies now look to 
consolidate maintenance and performance optimization roles to a single entity monitoring 
a fleet of plants or units. Breaking this down further, the monitoring center must be able 
to concentrate their efforts on optimizing performance and understanding the condition of 
each individual asset across the fleet.  
 
At this level, a monitoring center may be inundated with tens of thousands of individual 
asset variables. A method is required to manage big data to best accomplish the 
monitoring objectives. There can be terabytes of new data generated daily that these 
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centers must use to determine the health and performance of the organization’s many 
assets. A single gas turbine, for example, may have ~2,000 variables being stored, with 
about 200 specific to the performance of the turbine, like gas temperatures and exhaust 
pressures. While there can be another 200 variables more specifically for mechanical 
integrity, i.e. vibration readings or bearing and oil temps. A single coal-fired generating 
unit may have 40-50 different assets to monitor, each with anywhere from a few recorded 
variables to hundreds. 
 
Advanced Pattern Recognition: A simple approach to performance monitoring is 
setting hard-limit thresholds to alarm when data values extend outside of a predetermined 
“optimal” range. A drawback to this, however, is that the optimal range must be one that 
includes all operating loads and external input to avoid false alarms. For example, a 
bearing temp high limit would need to be set high enough to include the highest operating 
temperature on a hot day when ambient temps are affecting the bearing and the unit is 
operating at full capacity. But at different operating conditions, such as a cooler day when 
the ambient isn’t lending to higher bearing temps and load is low, the bearing temp could 
be higher than it historically was, while remaining under the high threshold. This method 
would not alarm on faults occurring within the defined normal operating range.  
 

 
 

Figure 1: Early fault detection compared to hard-limit methods. 
 

APR methods rely on the historical data of multiple variables of an asset to predict what 
the value of each variable should be at any given moment. The predictions are based on 
the activity of the other variables and relates to the performance of the variables in the 
past. APR methods are able to find faults much sooner than threshold monitoring 
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techniques widely used in maintenance programs and can predict values dependent on the 
other variables, see Figure 1. The methods work best when there is at least some 
correlation among the variables being monitored, and so independent assets are modeled 
separately and the calculations utilize only variables relevant to that particular asset.   
 
APR has become a common application for organizations that manage large amounts of 
performance and maintenance data on their assets. An engineer or data analyst building 
an APR model for the first time must determine boundary conditions for each asset, and 
subsections of those assets if necessary. Data variable selection can be completed using 
knowledge of the sensors fitted to each piece of equipment. Asset management and 
variable mapping can be completed easily by templating assets in a spreadsheet, Table 1. 
The models can then be imported into an APR software suite, such as Predict-ItTM by 
ECG, Inc. [1].  
 

Table 1: Building asset model templates. 
 

Process Variable 1A Fan 1B Fan 2A Fan 2B Fan 

Inlet Pressure 1APT1060 1BPT1060 2APT1060 2BPT1060 

Outlet Pressure 1APT1065 1BPT1065 2APT1065   

Amps 1ACT2556 1BCT2556 2ACT2556 2BCT2556 

Flow 1AFT1559 1BFT1559 2AFT1559 2BFT1559 

Air Temperature 1ATT1205 1BTT1205 2ATT1205 2BTT1205 

In Bearing Temp 1ATT1215 1BTT1215 2ATT1215 2BTT1215 

Out Bearing Temp 1ATT1216 1BTT1216   2BTT1216 

Damper Position 1AZT3324 1BZT3324 2AZT3324 2BZT3324 

Vibration 1 1AVT0056 1BVT0056 2AVT0056 2BVT0056 

Vibration 2 1AVT0057 1BVT0057 2AVT0057 2BVT0057 

Vibration 3 1AVT0058   2AVT0058 2BVT0058 

 
 
Once the boundary conditions are set and asset variables have been selected, the models 
that will be monitoring the assets can be created and trained on historical data. Relevant 
data should be selected that best represents optimal or normal operating conditions, 
Figure 2. Next, viewing the correlations among all the variables, the engineer can remove 
outliers using standard X-Y scatter plots, or other statistical charts that aid in narowing 
down the best data to be used for training, Figures 3 and 4.  
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Figure 2: Selecting training time frames that best represent optimal conditions. 
 

 
 

Figure 3: Correlation charts of all asset variables for the model. The model builder can 
manually remove outliers from individual plots (black circles). 
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Figure 4: Alternate statistical plots for narrowing down training data.  
 

 
 

Figure 5: Asset variable in alarm; actual value is lower than expected. 
 

Once the data is cropped to an acceptable extent, the model can be programmatically 
trained. It can then be run against existing data as well as run against incoming current 
data. Figure 5 shows an example of the results of running a model against 2 weeks of past 
data. One of the variables is lower than expected and in alarm. Any APR solution 
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typically produces a result similar to this, revealing an early warning when a particular 
variable, or variables, are not performing as expected. But the engineer or data analyst 
may be left wondering what this means. For the purpose of this paper, these variable 
deviations will be used as inputs to a Diagnostic Advisor that can be used as decision 
support for the end user. The supporting diagnostics are based on the theory of Bayesian 
networks.  
 
Bayesian Networks: Bayesian networks are directed acyclic graphs (DAG) that map 
variables to each other with their associated dependencies. A DAG is a graph with 
directed arrows but which do not contain directed cycles. These dependencies are 
represented by conditional probability tables (CPT). The CPTs are a reformulation of the 
joint probability distribution between two variables. Joint probability is the probability of 
two or more events or variables occurring together. Conditional probability is the 
probability of a variable/event given that we know another state of another 
variable/event. 
 
There is no distinction between independent and dependent variables and inference can 
be done in any direction. The method is non-parametric, nonlinear and can handle 
numerical and categorical variables. In statistics these models are also called directed 
graphical models.  
 
The term "Bayesian networks" was coined by Judea Pearl in 1985 to emphasize three 
aspects [2, 3]:  
 

1. The often subjective nature of the input information. 
2. The reliance on Bayes' conditioning as the basis for updating information. 
3. The distinction between causal and evidential modes of reasoning 

 
 
Bayesian networks consist of nodes connected by arrows representing real causal 
relations. Bayesian networks have a big advantage in that they are direct representation of 
the world. Unlike neural networks, deep learning and other “black box” methods, 
Bayesian networks are transparent, intuitive to understand and are capable of providing 
clear explanations. 
 
Bayesian network use the Bayes theorem to update the network. Mathematically Bayes’ 
theorem is stated as the following equation [4]: 

 
Where A and B are events and P(B)≠0: 
 

• P(A|B) is conditional probability of event A occurring given B is true. 
• P(B|A) is the conditional probability of event B occurring given that A is true 
• P(A) and P(B) are the probabilities of observing A and B independent of each 

other. 

https://en.wikipedia.org/wiki/Judea_Pearl
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Humans naturally can think of problems by going from cause to effect. For example, it is 
known that the flu causes a cough. But a cough could be caused by the flu or the common 
cold. Bayes’ theorem allows a reverse reasoning from effect to cause using sound 
probability theory. Since an engineer has to usually start with effects and then try to 
figure out the cause, the Bayes approach is very useful in this scenario. Starting from 
prior probabilities of faults, as soon as new evidence is available, Bayes theroem allows 
for these probabilities to be updated.  
 
Bayesian networks can be converted to causal network when constrained in the sense that 
the parents of each node are its direct causes. Historically structural equations are 
commonly used to causally represent the different mechanisms active in a system. 
Bayesian representation has been shown to be equivalent to structural equations [5, 6].  
 
Asset Management: Organization is crucial when dealing with such large amounts of 
data. Predict-ItTM utilizes an asset hierarchy system that allows users the ability to order 
assets by unit or site. In addition, particularly large assets may be subdivided into smaller 
segments. Or one can monitor different modes of operations, such as mechanical 
soundness and process performance. Figure 6 represents an asset hierarchy of 5 coal mills 
on a single steam unit with the parent folder labeled as Mill Data. There would be other 
parent folders for other assets on this unit. Other units or plants could be similarly set up.   
 
Defining an asset involves programming any possible symptoms the user believes could 
result from the pattern recognition calculations. The end user must then outline any 
possible faults for that particular asset. The faults must be defined with the corresponding 
directional symptoms, i.e. deviation high, deviation low, absolute high, absolute low, etc. 
User questions may also be set-up that allows input regarding data that may not be 
electronically recorded or tracked as an analog variable. Examples of this might be an 
asset’s service time or observational items like noise level of the asset.  
 

 
 

Figure 6: Asset hierarchy. 
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Actual instances that have been documented can be entered into the diagnostic 
calculations as well. When a fault occurs, the user should make note of any symptoms 
present to record this as a case. When these cases are entered, the probability of each fault 
is adjusted accordingly. Figure 7 shows what a fully configured coal mill might look like.  
 

 
 

Figure 7: Defining an asset with context variables, possible faults and symptoms. The end 
user can submit actual cases to further solidify the diagnostic calculations. 

 
Defining assets types allows the Diagnostic Advisor to create the Causal Asset Network 
(CAN). The CAN is represented as a network of Faults and Symptoms, with arrows 
linking associations from each column. These networks can become quite complex as the 
many variations of symptom combinations are set up. Figure 8 illustrates a simple CAN 
for an arbitrary asset. The red boxes are faults, blue boxes are symptoms and the green 
boxes represent context variables.  
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Figure 8: An example of a Causal Asset Network (CAN) created with an asset’s faults 
and symptoms. 

 
Diagnostic Reasoning: The Diagnostic Advisor will combine the functionality of the 
Bayesian networks with the results of pattern recognition fault detection. It will be used 
as a tool to visualize the diagnostics steps, experiment with diagnostic scenarios and 
answer questions related to asset conditions. Figure 9 shows an example list of pattern 
anomaly alarms that have been triggered for Mill A used in examples above. It shows that 
Roll 1 mean deflection is lower than expected and the standard deviation for that roll is 
higher than expected. It also shows that the accelerometer on the worm bearing is in 
alarm as an absolute high (hard-limit). These deviations from the expected are read into 
the diagnostic engine as symptoms.  
 

 
 

Figure 9: Current faults from the APR deviations. 
 

The Diagnostic Advisor is divided into four main viewing blocks, see Figure 10. These 
blocks include Ranked Faults, Evidence, User Questions and Ranked observations. The 
Ranked Faults box will include any possible faults that have been added to the asset. If 
the asset has evidence from pattern recognition or user questions, the faults will be 
ranked by likelihood of presence. Any symptoms from pattern recognition or context 
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variables that are currently present will be shown in the Evidence box, in order of 
influence to the faults. 
 

 
 

Figure 10: The four-block view of the Diagnostic Reasoner. 
 

The User Questions block will contain any questions that are not present or are unknown; 
otherwise they will be included in the Evidence block. The importance of the remaining 
questions will also be shown in this box. The Ranked Observations contains any other 
possible symptoms that are absent or unknown. 
 
The Ranked Faults box can guide decision making for the end user based on the 
likelihood of possible faults. When first opened, it will contain the current state of the 
diagnostic for that asset based on available information. The tool can be used for 
experimentation by tweaking the other inputs and answering user questions in the other 
boxes. The likelihood of the faults will adjust accordingly, without disrupting the live 
system.  
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Application to Fleet-Wide Monitoring: APR technologies have been employed by 
many organizations to aid in organizing and managing multiple assets with large amounts 
of sampled data. Utilizing the results of APR as observations in a causal network will 
allow these organizations not only the early detection of faults, but aid in diagnosing the 
root cause. This can assist in outage planning and preparation, as well as help mitigate 
and avoid catastrophic failures, preventing the possibility of hundreds of thousands, or 
even millions, of dollars of lost revenue.  
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