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Abstract: This paper describes the relationship between a bathtub curve, failure 
distributions, and commonly used metrics: mean-time-before failure (MTBF), mean-time-
between failure (MTBF), and mean-time-to failure (MTTF) – metrics that are often 
misunderstood and misused. A bathtub curve is a statistical depiction of the failure rate 
over the lifetime of a population of products and is related to a failure-distribution curve: 
they can be combined to form a continuous curve. A bathtub curve graphically relates three 
types of failure: early, random, and wear out. Manufacturing and material defects typically 
result in early, rapid failure of products: that region of a bathtub curve is called infant 
mortality. After the infant-mortality region, there is a constant-failure region during which 
a low number of failures occur that are often referred to as random failures that are 
characterized as having a mean-time-between failures (MTBF). In-use products are 
subjected to stresses and strains that are cyclic in nature, plastic work, and which eventually 
causes irreversible damage and the onset of degraded operation. Damage accumulates until 
the product is no longer capable of operating within specifications and is said to have 
functionally failed – it has worn out. Such functional failures are characterized by a failure 
distribution having two common metrics: mean-time-before failure (MTBF) and mean-
time-to failure (MTTF). Associated with bathtub and failure distribution curves are other 
metrics, including the following: failure rate, prognostic trigger point, prognostic distance 
(PD), failures-in-time (FIT), and useful life. Those metrics and how they are related are the 
focus of this paper. 
 
Keywords: Bathtub; degradation; failure; metrics; prognostics; trigger; useful life 
 

1. INTRODUCTION 
There is a relationship between a bathtub curve failure distributions and commonly used 
metrics: mean-time-before failure (MTBF), mean-time-between failure (MTBF), and 
mean-time-to failure (MTTF). These metrics are often misunderstood and misused. A 
bathtub curve, illustrated in Figure 1, is a statistical depiction of the failure rate over the 
lifetime of a population of products; and it is related to a failure-distribution curve (see 
Figure 2). They can be combined to form a continuous curve [1]-[4].  
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Prognostics 

Prognostics is an ability to accurately detect and report future failures in systems.  The 
purpose of prognostics is to detect degradation and create prognostic information such as 
estimates of state-of-health (SoH) and remaining-useful-life (RUL) [5]-[7].  

Bathtub Curve 

A bathtub curve graphically relates three types of failure: early, random (constant failure), 
and wear out. Manufacturing and material defects typically result in early, rapid failure of 
objects: that region of a bathtub curve is called infant mortality. After the infant-mortality 
region, there is a constant-failure region during which a low number of failures occur that 
are often referred to as random failures. These failures are characterized as having a mean-
time-between failures (MTBF). In-use products are subjected to stresses and strains that 
are cyclic in nature: plastic work. Plastic work eventually causes irreversible damage and 
the onset of degraded operation. Damage accumulates until the product is no longer capable 
of operating within specifications and is said to have functionally failed – it has worn out. 
The random, or constant, failure region is sometimes referred to as the useful life region 
[7],[8]. 
 

 

Figure 1: Example of a bathtub curve 

Failure Distribution Curve 

Products fail at different rates, creating a failure distribution (see Figure 2) that may or may 
not be a normal distribution. 
 
Referring to Figure 3, mean-time-between failure (MTBF) is defined as the time between 
low-rate failures. Such failures are said to be random failures occurring at constant rate of 
failure: products having an exponential distribution. MTBF is also defined as mean-time-
before failure (MTBF). More confusing, MTBF (between) has been used in the context of 
repairable products while MTBF (before) has been used in the context of non-repairable 
products. Even more confusing: EQ. (1) is used to calculate mean time to failure (MTTF) 
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and EQ. (2) is used to calculate MTBF (before) – the calculations are identical [3], [4], [9]-
[12]. 
 

 

Figure 2: Example of a failure distribution curve due to degradation failures (wear out) 

MTBF and MTTF: Relationship to a Bathtub and a Failure-Distribution Curve 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇) (𝑁𝑁𝑁𝑁𝑇𝑇𝑁𝑁𝑇𝑇𝑁𝑁 𝑇𝑇𝑜𝑜 𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁𝑇𝑇𝐹𝐹)⁄     (1) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇) (𝑁𝑁𝑁𝑁𝑇𝑇𝑁𝑁𝑇𝑇𝑁𝑁 𝑇𝑇𝑜𝑜 𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁𝑇𝑇𝐹𝐹)⁄     (2) 

 

 

Figure 3: Combined bathtub and failure-distribution curve showing MTBF (between) 

2. BATHTUB: OTHER TERMS  
Other metrics related to failures include prognostic trigger point, prognostic distance (PD), 
failures-in-time (FIT), and useful life. Related to useful life are the following: (1) remaining 
useful life (RUL), and (2) end of life (EOL). 
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Prognostic Trigger, PD, RUL, and EOL 

In the early days of IC devices, 1993 for example, it was believed that those devices did 
not experience wear out: they failed randomly. IC devices were subjected to ‘burn in’ 
testing where high stresses were applied to cause devices with manufacturing and/or 
material defects to fail: the remaining devices would then fail randomly at a low rate of 
failure,  

𝑜𝑜𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁𝑇𝑇 𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 = 1 − exp [ −𝜆𝜆𝑇𝑇𝛽𝛽]      (3) 

EQ. (3) is related to a bathtub curve as follows (see Figure 4): 
 For β < 1, the failure rate decreases as time increases – infant mortality 

For β = 1, the failure rate is constant – useful life 
For β > 1, the failure rate increases – end of life 

One method of prognostic-enabling an IC product, such as a microprocessor, is to include 
a device that fails earlier than any other device: much like a canary used in mines to detect 
lethal gases such as methane. Referring to Figure 4, that earlier time of failure is called a 
prognostic trigger point and prognostic distance (PD) is defined as 

𝑃𝑃𝑃𝑃 = 𝑁𝑁𝐹𝐹𝑇𝑇𝑜𝑜𝑁𝑁𝑇𝑇 𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇 − (𝑇𝑇𝑁𝑁𝑇𝑇𝑡𝑡𝑡𝑡𝑇𝑇𝑁𝑁 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑁𝑁𝑇𝑇𝑡𝑡𝑇𝑇𝑏𝑏 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑜𝑜 𝑁𝑁𝐹𝐹𝑇𝑇𝑜𝑜𝑁𝑁𝑇𝑇 𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇) (4) 

 

 

Figure 4: Bathtub showing other metrics 

A canary is used as an early warning (alert) that a product needs to be replaced because it 
is about to enter the (EOL) region of operation. Such use is predicated on a belief that 
careful design, high-quality manufacturing, and thorough understanding of physics of 
failure would lead to canary failures that could be used to accurately calculate PD and RUL 
estimates, where RUL is the amount of time between the trigger point and the beginning 
of the EOL region [6], [7]. 
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FIT 

FIT values are used as a measure of the reliability of a product [13],  

Failure Rate, Lifetime = 𝜆𝜆 = (number of failures)
(number of tested parts)(hours of test) 𝐴𝐴𝐴𝐴

 109 FIT (5) 

FIT = 1 𝜆𝜆⁄                                                    (6) 

Suppose a particular system has a product that is tested using a regime that calls for 40 
units to be tested for 2,500 hours and the AF value for the required test is 10,000 hours 
using a test cycle of 1 hour. During the test, only 1 of the 40 fails: the failure rate would be 
calculated as 

𝜆𝜆 =
(1)

(40)(2,500 cycles)(10,000 hours/cycle) 109 = 1 FIT 

This does not help you because you typically only know the FIT number. Suppose the 
product specifications list FIT number of 50, 

𝜆𝜆 =  1 (50⁄  𝑀𝑀𝐹𝐹𝑀𝑀) = 109 50 =  20,000,000 = 20 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑏𝑏 ℎ𝑇𝑇𝑁𝑁𝑁𝑁𝐹𝐹!⁄  

Because the calculated rate of failure is so large, you decide to calculate MTBF using EQ. 
(2),  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇) (𝑁𝑁𝑁𝑁𝑇𝑇𝑁𝑁𝑇𝑇𝑁𝑁 𝑇𝑇𝑜𝑜 𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁𝑇𝑇𝐹𝐹)⁄      

But this does not help because you do not know the total time, so you turn to EQ. (7), 

𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇 = (# 𝑇𝑇𝑜𝑜 𝑇𝑇𝑇𝑇𝐹𝐹𝑇𝑇𝑇𝑇𝑡𝑡 𝑁𝑁𝑏𝑏𝑇𝑇𝑇𝑇𝐹𝐹) ∗ (𝑇𝑇𝑇𝑇𝐹𝐹𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)             (7) 

which is no help because you don’t know the number of tested units nor the test time. So, 
you find another expression for MTBF: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 109 𝑀𝑀𝐹𝐹𝑀𝑀⁄                (8) 

which, for FIT = 50 results in an MTBF (life time) of 20,000,000 hours: over 2,000 years!  
We highly recommend for prognostics never to use MTBF and MTTF metrics related to a 
bathtub curve. Similarly, never use FIT values for prognostics.  

3. FAILURE DISTRIBUTION: OTHER TERMS 
Referring back to Figure 3, you see that MTBF (before) is related to failure distribution 
and is interchangeable with a more modern use of MTTF. Further research leads to the 
following discoveries: 
 

• MTTF is defined as ‘mean time to failure’ for a non-repairable product 
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• A relationship of MTBF to MTTF is defined as follows [13]: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀      (9) 

Where MTTR is defined as ‘mean time to repair’ 
 

• MTTR is usually not specified 
 

More importantly, from EQ. (3), an MTTF and/or MTBF value only means there is 63% 
probability the system will fail prior in time to that value: not very useful in estimating 
when a particular instantiation of product is going to fail. 

Failure Distribution: Degradation Signatures and Time-to-Failure 

Referring to Figure 2 and Figure 5, let the fastest failure curve be replaced by a degradation 
signature, CBD1, let the slowest failure curve be replaced by another degradation signature, 
CBD2, and let each degradation signature begin at and reach failure at different times. Then 
we define TTF (time-to-failure), 

 𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑜𝑜𝑁𝑁𝑏𝑏𝑓𝑓𝑇𝑇𝑇𝑇𝑇𝑇𝑏𝑏𝑇𝑇𝑇𝑇 𝑜𝑜𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁𝑇𝑇) − (𝑇𝑇𝑏𝑏𝐹𝐹𝑇𝑇𝑇𝑇 𝑇𝑇𝑜𝑜 𝑡𝑡𝑇𝑇𝑡𝑡𝑁𝑁𝑇𝑇𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑏𝑏)  (10) 

 

 

Figure 5: Degradation signatures: TTF relationship to failure distribution 

Degradation signature, TTF, sampled data, and RUL 

Referring to Figure 6, suppose you have a PHM system with a set of algorithms for 
conditioning, signature processing, and prediction estimating that accurately detects the 
onset of degradation, processes input signature data to accurately estimate when functional 
failure is likely to occur. Then from EQ. (10) for every sampled data at time S, 

 𝑀𝑀𝑅𝑅𝑅𝑅 = 𝑀𝑀𝑀𝑀𝑀𝑀 − (sample time)       (11) 
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To produce RUL estimates, you need to use a PHM system that uses condition-based data 
(CBD) to produce degradation signatures that are processed to produce accurate estimates 
of TTF. Then for each sampled data point, that PHM system calculates accurate RUL 
estimates. 

 

Figure 6: Degradation signature, TTF, sampled data, and RUL 

Degradation and Prognostic Information 

You cannot use metrics related to a bathtub curve or a failure distribution curve to produce 
accurate estimates of RUL for a particular product. Instead, you must process CBD, detect 
the onset of degradation, transform CBD points into degradation signature data, project 
that signature and estimate a time when the projected signature is likely to reach a defined 
threshold level for functional failure. You need to use algorithms that (1) mitigate time of 
functional-failure variability not caused by degradation and (2) minimizes variability 
caused by degradation.  
 
A design approach is to treat data points as particles having inertia and momentum: 
particles do not exhibit rapid changes, instead they tend to maintain velocity and direction. 
A satisfactory design objective is to employ a dampening factor to changes in amplitude 
and velocity. Another design approach is to develop a random-walk solution for particles 
that progress from a zero-degradation state (lower-left corner) to a maximum-degradation 
state (upper-right corner). For example, (1) use the previous data point; (2) calculate the 
predicted location of the next data point; (3) adapt a signature model to an adjusted location 
between the predicted and the actual location of the next data point; (4) use dampening 
factors and coefficients  to adjust the signature model; (5) use the adapted model to estimate 
when functional failure is likely to occur; and (6) calculate prognostic information such as 
RUL and prognostic horizon (PH), the relative time between the onset of degradation and 
the time of functional failure. Use EQ. (10) and EQ. (11) to calculate RUL, then calculate 
PH using EQ. (12),  

𝑃𝑃𝑃𝑃 = 𝑀𝑀𝑅𝑅𝑅𝑅 + (𝐹𝐹𝑇𝑇𝑇𝑇𝑠𝑠𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) − (𝑇𝑇𝑏𝑏𝐹𝐹𝑇𝑇𝑇𝑇_ 𝑇𝑇𝑜𝑜_𝑡𝑡𝑇𝑇𝑡𝑡𝑁𝑁𝑇𝑇𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑏𝑏 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) (12) 

From the definition of PH and TTF (see Figure 6), PH and TFF are the same. The authors 
prefer using PH because TTF is sometimes referenced to a time before the onset of 
degradation: for example, the time when a product is first used or a value of time reference 
to a calendar time (yy/mm/dd hh: mm: ss).  
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 Predefined RUL Value 

Prior to the onset of degradation, you cannot make any accurate estimate of RUL: you must 
use a predefined value. For example, use a customer-specified value or a vendor-specified 
value, or a value derived from evaluating historical or experimental data. That initial RUL 
value is likely to be higher or lower than actual. Figure 7 is an example of a solution applied 
to an initial-estimate error [14].  
 
In addition to a high-value initial-estimate error, a reliability engineer might specify an 
initial RUL value that is low compared to that for a prognostic target. Suppose for a 
prognostic target a reliability engineer specified 100 days as the estimated TTF after the 
onset of degradation and it actually takes 200 days to become functionally failed: a random-
walk with Kalman-like solution will result in curves that resembles those shown in Figure 
8 [14]. 

 
 Figure 7: RUL and PH estimates when initial RUL is higher than actual 

 
Figure 8: RUL and PH estimates when initial RUL is lower than actual 
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4. CONCLUSION 
This paper described problems in relating metrics related to bathtub and failure 
distributions: two MTBF metric and an MTTF metric. Those metrics have multiple 
definitions that are confusing and, more importantly, are not suitable for use in prognostics 
for products. Other metrics related to a bathtub curve (prognostic trigger point, RUL, and 
PD, and FIT) are also not suitable for use in prognostics.  
Metrics related to degradation were introduced and shown to be useful in prognostics: TTF, 
sample time, RUL, and PH. In the absence of detected degradation, TTF cannot be 
calculated: instead, a predefined value must be used, which results in an initial RUL value 
that is higher or lower in value than actual.  
To produce accurate RUL estimates, it is necessary to use prediction algorithms that do not 
rely on statistical-based and reliability-based metrics such MTBF, MTTF, and FIT.   
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