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Abstract: This paper describes a design for an example of a Prognostic Health Monitoring 
(PHM) system that is able to detect a state of degraded health and make an accurate 
prediction of when a resulting future failure in the system is likely to occur in a dual set of 
electromechanical actuators (EMA) subsystems, each comprising a switch-mode power 
supply (SMPS) and two identical EMAs. Examples of considerations in a design of a PHM 
system include the following: (1) What is the framework for the PHM system? (2) What 
units (targets) are to be prognostic enabled? (3) What failure modes are to be monitored? 
(4) What kind of data conditioning is necessary to isolate and extract condition indicators 
and/or leading indicators of failure from noisy condition-based data (CBD)? (5) Do special 
methods of data processing need to be developed and, if so, how?  (6) What are the 
prognostic accuracy requirements? (7) What alerts and alert levels are required to support 
prognoses? (8) What are the requirements related to starting, stopping, resuming, and 
recovery of the system? (9) What architecture approach is going to be used to define the 
target system to the PHM system? 
 *RotoSense and ARULEAV are trademarks of Ridgetop Group, Inc 
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1. INTRODUCTION 

An important purpose of a Prognostic Health Monitoring/Management (PHM) system is  
to detect a state of degraded health and accurately predict when functional failure is likely 
to occur [1]-[2]. This paper presents a design of a PHM system for a dual set of 
electromechanical actuators (EMA) subsystems, each comprising a switch-mode power 
supply (SMPS) and two identical EMAs. The design and development of a system to 
support PHM is complex and there are many approaches to do so. Even though each such 
system (with the possible exception of demonstrations, test beds, and experiments) is 
unique, there are important design considerations. Examples of considerations in a design 
of a PHM system include the following: (1) What is the framework for the PHM system? 
(2) What units (targets) are to be prognostic enabled? (3) What failure modes are to be 
monitored? (4) What kind of data conditioning is necessary to isolate and extract condition 
indicators and/or leading indicators of failure from noisy condition-based data (CBD)? (5) 
Do special methods of data processing need to be developed and, if so, how?  (6) What are 
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the prognostic accuracy requirements? (7) What alerts and alert levels are required to 
support prognoses? (8) What are the requirements related to starting, stopping, resuming, 
and recovery of the system? (9) What architecture approach is going to be used to define 
the target system to the PHM system? 

There are other considerations that are not presented, including but not limited to the 
following: comparison and selection of sensors; the cost to design, develop, test, verify, 
field, and maintain a PHM solution for each prognostic target; evaluation of the cost of 
failure versus the cost of failure prevention; repair versus replacement cost; long-term costs 
associated with installing, operating, and maintaining a PHM system. 

2. DESIGN CONSIDERATIONS 

Framework for the PHM System 

The framework shown in Figure 1 is selected as the base framework. 

 
Figure 1: Framework for a PHM System (based on [3]-[5]). 

Health Management Framework. Health management is very complex and includes 
decisions that consider risk, deployment, maintenance, reporting and directions 
(imperatives), procurement and delivery, load shedding, soft shutdown, and much more.   

Performance Validation Framework. Because predictions are estimates, there is always 
a question as to how good (accurate) those estimates are. A PHM system could be designed 
and developed to provide means and methods to evaluate and validate the performance of 
the prediction algorithms. This paper does not address the design of a Performance 
Validation Framework.  
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Prognostic Targets 

The selected prognostic targets are two EMA subsystems, each comprising a power supply 
and two EMAs as shown in Figure 2. 

 
Figure 2: Diagram of Two EMA Subsystems. 

Power Supply. The power supplies are switched-mode power supplies (SMPS) and the 
identified fault is loss of capacitance in the output filter (block 1 in Figure 3 and Figure 4). 
That fault is known to result in excessive noise and loss of ability to deliver power, which 
results in irreversible damage to both a power supply (damaged switching transistors) and 
a downstream EMA (block 2 in Figure 3) connected to it. 

 
Figure 3: Block Diagram of a Prognostic-Enabled Power Supply in a Test Bed. 

EMA. Each EMA (block 2 in Figure 3 and Figure 4) comprises a controller (block 11) for 
a brushless DC (BLDC) motor; the motor has three stator windings (block 13) and a shaft 
(block 14) to position a load by moving up or down; AC power is delivered by six power-
switching transistors (block 12) configured as an H-bridge type of commutation. 

The EMA test bed can inject a fault (increase in on-resistance) into any one of the six 
power-switching branches in the H-bridge. Although not shown are two other fault 
injection methods: one to simulate a damaged stator winding and another to increase the 
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load on the motor shaft. Three current sensors (block 10) are used to provide CBD for 
detecting and prognosing faults. 

 
Figure 4: Block Diagram of a Prognostic-Enabled EMA in a Test Bed. 

Failure Modes 

The PHM system design needs to detect and prognose the failure modes (faults): (i) loss of 
filtering capacitance in either of the two EMA power supplies; (ii) excessive load/friction 
on the motor shaft (block 14 in Figure 4); (iii) damage to any of the three stator windings 
(block 13 in Figure 4); and (iv) damage to any of the six power-switching transistors in the 
H-bridge connected to the stator windings. 

Data Conditioning 

You need to collect and analyze sensor data, historical and test, to determine what kind of 
data conditioning you need – in practical applications, data conditioning, which includes 
data sampling, is always required. 

Power supply output. The output of the power supply () comprises ripple voltage, DC 
voltage, and noise. Noise is anything other than a feature data of interest and includes 
thermal noise, switching (spikes and glitches) noise, and other features such as droop, 
harmonic distortion, and damped-ringing responses. 

Design is to configure your ripple-voltage sensor to employ bandpass filtering when 
sampling: frequencies between 200 and 250 kHz.  
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Figure 5: Noisy Voltage from the Power Supply. 

Phase Currents. The phase currents of an EMA are also noisy (Figure 6), and they vary 
depending on positioning direction and load. There is also amplitude variation resulting 
from the floating reference topology of the EMA motor.  

 
Figure 6: Phase Currents and Position Direction (Left) – Electrical Noise (Right). 

 
Figure 7: Noise & Amplitude – Normal Load (Left) & Heavy Load (Right). 
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Figure 8: Floating Reference Results in Zero-Sum-Amplitude Variation. 

Referring back to Figure 4, a design point is to employ windowing (Figure 9) with a 
positioning sensor (block 9) and a Window Control (block 20) to sample and measure 
currents (block 21). The window result is shown in Figure 10. 

 
Figure 9: Sampling Window, Up Positioning for Normal (Left) and Heavy (Right) Loads. 

 
Figure 10: Window Design Employed on the EMA Test Bed. 

Special Methods 

Because there are 10 EMA-fault modes to be detected and isolated (six transistors, three 
motor windings, and a motor shaft) with only three current sensors, special methods of 
processing phase-current data are required to satisfy the 10 degrees of freedom.  
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Positive and negative halves of phase currents. One design approach is to distinguish 
changes in the positive halves versus changes in the negative halves of the phase currents 
(Figure 11, left).  

For example, normal values of on-resistance of power-switching transistors range from 
0.01 to 0.20 Ω, so that a value of 2.0 Ω would be defined as functional failure. 
Experimentation with the EMA test bed reveals that level of degradation results in decrease 
of only 25-mA in either the positive or the negative half of the phase current (Figure 11, 
left): only a 1.4% change in total current – the feature (current change) is lost in the noise 
(Figure 11, right). Differentiating between peak changes in the current halves improves 
resolution: but only from 1.4% to 2.8%.  

 
Figure 11: Positive-Negative Difference (Left) & Noisy Data (Right). 

Special-rms calculations. A design solution does the following: define threshold levels, 
truncate all current values between the threshold levels, use the remaining values to 
calculate positive and negative magnitudes, and then sum the magnitudes. This method, 
called special-rms, emphasizes any differences between peak current values and the 
defined thresholds: the method overcomes the low-amplitude changes in phase currents. 

𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  0.70  set threshold level     (1) 
𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  900  set nominal value of peak current (mA)  (2) 

 𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃       (3) 
 
When  (𝐼𝐼(𝑛𝑛) > 0) && (𝐼𝐼(𝑛𝑛) > 𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)   then letting P = count of true, 

𝑃𝑃𝑇𝑇𝑅𝑅𝑅𝑅 =  [(1 𝑃𝑃⁄ )∑ (𝐼𝐼(𝑛𝑛) − 𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)𝑛𝑛
1 ]  do not square   (4) 

 
When  (𝐼𝐼(𝑛𝑛) < 0 && 𝐼𝐼(𝑛𝑛) < −𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇    then letting N = count of true, 
 

𝑁𝑁𝑇𝑇𝑅𝑅𝑅𝑅 =  [(1 𝑁𝑁⁄ )∑ (𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝐼𝐼(𝑛𝑛)) 𝑛𝑛
1 ]   do not square   (5) 

 
𝐼𝐼𝑇𝑇𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝑃𝑃𝑇𝑇𝑅𝑅𝑅𝑅 + 𝑁𝑁𝑇𝑇𝑅𝑅𝑅𝑅   Sum the magnitudes   (6) 
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The special-rms method significantly improves resolution compared to the normal rms 
method: about a 5:1 increase for a 0.70 threshold. 

 

Figure 12. Graphical Illustration of Special-rms Method 

Figure 13 illustrates the effectiveness of using the special-rms method for both the positive 
and negative halves of the three phase currents: (1) in the presence of degradation in an H-
bridge transistor, there is a change in measured amplitudes of all six halves; (2) there is a 
significant change in the sum of the current halves for a degraded transistor, while the sums 
of the other two generally remains unchanged except for noise. 

 
Figure 13: H-Bridge Transistor Fault, Negative Half of the Phase A Current.  

Current offset. Close examination of the phase currents for a zero-degradation, no-load 
test (Figure 14) indicates the three phase currents are not centered about zero: this shift in 
the reference points of phase currents is confirmed by evaluation of plots in Figure 13. 
Differences in the reference levels is another form of noise of significance when comparing 
two sets of data, such as the magnitudes of current. 

A method to mitigate current-offset noise (a source of error) is the following: (1) Sample 
and measure the phase currents during a calibration test (position up, no load, no 
degradation); (2) calculate and save the value of the mean amplitudes; (3) normalize 
subsequent current measurements. 
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Let 𝑥𝑥 = 1: 3 represent a phase current (A, B, C)      
Let 𝑧𝑧 = 1:𝑛𝑛 represent a calibration sample to a design-defined limit   

 
When  (𝐼𝐼𝑥𝑥(𝑛𝑛) > 0)    then letting P = count of true, 

𝐼𝐼0𝑃𝑃𝐷𝐷𝐴𝐴_𝑃𝑃 =  [(1 𝑃𝑃⁄ )∑ ∑ (𝐼𝐼(𝑛𝑛) − 𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)𝑛𝑛
1

𝑥𝑥
1 ]  do not square   (7) 

 
When  (𝐼𝐼𝑥𝑥(𝑛𝑛) < 0)    then letting N = count of true, 

𝐼𝐼0𝑃𝑃𝐷𝐷𝐴𝐴_𝑇𝑇 =  [(1 𝑁𝑁⁄ )∑ ∑ (𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝐼𝐼(𝑛𝑛))𝑛𝑛
1

𝑥𝑥
1 ]  do not square   (8) 

 
Then, 

𝐼𝐼𝑂𝑂𝐷𝐷𝐷𝐷 =  (𝑃𝑃𝑇𝑇𝑅𝑅𝑅𝑅 + 𝑁𝑁𝑇𝑇𝑅𝑅𝑅𝑅) 2⁄    Offset adjustment values  (9) 
 

Subsequently, 

𝐼𝐼𝑃𝑃𝐷𝐷𝐴𝐴 =  𝐼𝐼(𝑛𝑛) −  𝐼𝐼𝑂𝑂𝐷𝐷𝐷𝐷    Perform offset adjustment  (10) 

 
Figure 14: Phase Currents for Zero Degradation, Normal Load, Position Up. 

Data Smoothing. The sensor data, pre-conditioned or otherwise, is noisy and is likely to 
result in noisy feature data (Figure 13). Subsequent experiments confirm that the noisy 
feature data ultimately results in prognostic information that does not meet accuracy 
requirements. 

The design solution is to smooth the feature data, the transformed fault-to-failure 
progression (FFP) signature data, and the functional-failure signature (FFS) data that is 
input to a set of prediction algorithms (Figure 15). Subsequent experimentation confirms 
that after data smoothing, prognostic accuracy requirements are met.  



10 

 

Figure 15: Smoothed Feature Data (Left), FFP Data (Middle) and FSS Data (Right). 

Prognostic Accuracy 

Convergence specifications, initial error. The specifications call for prognostic 
information to converge to within 25% when the remaining life is ≥ 50% (upper blue dots 
in Figure 16) and to within 10% when the remaining life is ≥ 30% (lower blue dots in 
Figure 16). The specifications are for cases where the initial estimated life when 
degradation begins is within 50% of actual.  

 
Figure 16: RUL Convergence from 50% Error – PD 50% & 10% Points Shown. 

Referring to Left-hand plots in Figure 17, a 25% accuracy within 50% RUL is met, but a 
10% accuracy within 25% is not met; in the right-hand plots, both the 25% and 10% 
accuracy specifications are met. 

During design, you need to run experiments and/or simulations to indicate the design is 
likely to result in an implemented PHM system that meets specifications. 

Alerts 

The PHM system is designed to issue an alert at the SoH conditions listed in Table 1. The 
alerts include alert text and actions to be taken as indicated. To do so, the design needs to 
include the following functionality and methods: (1) prediction algorithms to produce SoH 
and other prognostic information; (2) support to monitor SoH values and appropriately 
trigger alerts; and (3) support to include relevant prognostic and failure information such 
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as RUL, PH, and times to an alert subsystem, such as a Health Management/Services 
framework (see the lower left of Figure 19). 

 
Figure 17: (Left Plots) Accuracy Within 25% is Met, Accuracy Within 10% is Not Met -

(Right Plots) Accuracy Within 25% and Within 10% are Both Met. 

Table 1: SoH and Alert Specifications 

State of Health 
(SoH) Level Level: Clear Text Action 

< 100% Warning: xxx is degraded Monitor 

≤ 75% Warning: xxx is ≤ 75% degraded Next Maintenance  

≤ 50% Error: xxx is ≤ 50% degraded Maintenance within RUL/2 

≤ 25% Error: xxx is ≤ 25% degraded Maint/Repair within RUL/2 

≤ 10% Alarm: xxx failure within RUL Immediate Repair 

≤ 5% Alarm: imminent failure within RUL Immediate Repair 

0% Bells/whistles: functional failure Immediate Repair 

 
Figure 18: Example of RUL & PH Estimates (Left) and SoH Estimates with Alert Levels. 
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Start, Stop, Resume 

The PHM system is to include the following: (1) support for stopping and restarting health 
monitoring; (2) support for resuming health monitoring after a planned stop or an 
unplanned system stop (a crash); (3) when health monitoring is resumed, the state of health 
of the system shall be the same as that at a checkpoint time; (4) checkpointing shall be at 
the prognostic-target level – specifically for each of the two power supplies and for each 
of the four EMAs. 

A design solution is the approach shown in Figure 22. 

Architecture to Define Targets to PHM System 

Figure 19 is a diagram of a system architecture to support the design of the PHM system 
presented in this paper. The design approach uses a node-based approach. The design 
specifications, decisions, and architecture are subject to change as the design is refined, as 
the system is implemented, and as it is updated during development. 

 
Figure 19: Design Level of Architecture. 

Node-Based Approach 

Figure 20 diagrams the architecture of Figure 19 to show more details of a node-based 
architecture as applied to the dual EMA subsystem presented in this paper. 
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Figure 20: Node-Based Approach for Dual EMA Subsystem. 

Node-Based Control and Data Flow 

Figure 21 is a block diagram that illustrates the node-based control and data flow of the 
PHM system design. 

 
Figure 21: Node-Based Control and Data Flow. 
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Design Approach for Checkpoint/Restart 

Figure 22 is a block diagram that illustrates a design approach to support checkpoint/restart. 

 
Figure 22: Design Approach to Support Checkpoint/Restart. 

3. DESIGN: VERIFICATION 

A critical design process is data analyses: you need to design and run a series of 
experiments (DoE) using the EMA test that collects sensor data for each of the four selected 
faults. The data should comprise EMA operation before the onset of degradation, from the 
onset of degradation through increasing degradation to functional failure. Functional 
failure is defined as the level of degradation at which the prognostic target (power supply 
or EMA) no longer operates within specification. 

Power Supply 

Evaluation of Figure 23 and Figure 24 verifies the design for the power supply. 

 
Figure 23: Power Supply FFS 
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Figure 24: Power Supply RUL & PH (Left), SoH (Right) 

EMA Winding, Load, Switching Transistor 

Evaluation of the results plotted in Figure 25 through Figure 28 verifies the design for the 
EMAs. 

 

Figure 25: Fault Data for Winding, Friction/Load, and Switching Transistor 

 
Figure 26: Winding Fault – RUL & PH (Left) and SoH (Right) 
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Figure 27: Loading/Friction Fault – RUL & PH (Left) and SoH (Right) 

 
Figure 28: Transistor Fault – RUL & PH (Left) and SoH (Right) 

4. SUMMARY 

This paper presented an example of a design for a robust PHM system comprising a dual 
set of two EMAs and a power supply. The design began with a general framework for a 
PHM system (Figure 1) and a block diagram description of a dual EMA system to be 
prognostic enabled. A critical design approach is to collect and analyze data related to the 
failure modes to be supported. Both the feature data related to failure and the noise in the 
collected data requires analyses to determine how to process the data to isolated and extract 
features for creating failure signatures and how to process the data to sufficiently eliminate 
or otherwise mitigate noise to meet specifications, especially accuracy requirements for 
detecting the onset of failure and predicting a time of future failure. 

The following feature noise considerations were presented for the power supply: ripple 
voltage is the feature and significant noise such as thermal noise, harmonic distortion, and 
switching noise. The common noise associated with the EMAs included (1) the positioning 
of the EMA (up or down and (2) the start and the stop periods – the design solution was to 
employ a sampling window. Because of magnitude differences, a design for a special-rms 
method was developed, and a design to mitigate significant offset errors in current 
references was developed. A third design to mitigate noise was to employ data smoothing 
of the feature data and the transforms of that feature data into signature data. 
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An updated framework was presented that would support node-based sensors for 
monitoring, data conditioning and transformation into signatures, prediction processing of 
the signature data, detection of alerts and the issuing of alerts. The updated framework 
included an architecture to support checkpoint-restart to start, stop, resume, and recover 
the PHM system. 

The design was verified by using an EMA testbed and injecting faults into the power supply 
and the EMAs. Data, from no degradation to degradation and then to functional failure was 
collected and processed to produce prognostic information. The prognostic information – 
RUL, PH, and SoH – was plotted, analyzed, and evaluated. The results indicated the design 
will correctly detect all four of the fault modes and will produce prognostic information 
that meets the design specifications. 
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	,𝑇-𝑃𝐸𝐴𝐾.= 0.70  set threshold level     (1)
	,𝐼-𝑃𝐸𝐴𝐾.= 900  set nominal value of peak current (mA)  (2)
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	,𝑁-𝑅𝑀𝑆.= [,,1-𝑁..,1-𝑛-(,𝐼-𝑇𝑅𝑈𝑁𝐶.−𝐼,𝑛.) .]   do not square   (5)
	,𝐼-𝑅𝑀𝑆_𝐷𝐼𝐹𝐹.= ,𝑃-𝑅𝑀𝑆.+,𝑁-𝑅𝑀𝑆.   Sum the magnitudes   (6)
	Let 𝑥=1:3 represent a phase current (A, B, C)
	Let 𝑧=1:𝑛 represent a calibration sample to a design-defined limit
	,𝐼-0𝐴𝐷𝐽_𝑃.= [,,1-𝑃..,1-𝑥-,1-𝑛-(𝐼,𝑛.−,𝐼-𝑇𝑅𝑈𝑁𝐶.)..]  do not square   (7)
	,𝐼-0𝐴𝐷𝐽_𝑁.= [,,1-𝑁..,1-𝑥-,1-𝑛-(,𝐼-𝑇𝑅𝑈𝑁𝐶.−𝐼,𝑛.)..]  do not square   (8)
	,𝐼-𝑂𝐹𝐹.= ,(,𝑃-𝑅𝑀𝑆.+,𝑁-𝑅𝑀𝑆.)-2.   Offset adjustment values  (9)
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