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Abstract: Turbomachinery condition monitoring and fault detection in the Malaysian oil 
and gas industry is currently done by monitoring the parameters of the equipment, such as 
a gas turbine, based on limits provided by the original equipment manufacturer. This is 
performed in an attempt to avoid any unscheduled downtime and catastrophic failure of the 
machinery. However, this method has proven to be insufficient and ineffective in providing 
early information or warning regarding machine faults. This paper presents a case study of 
a gas turbine that developed a blade fault in an oil and gas plant despite operating within 
its original equipment manufacturer limits. The parameters used for machinery condition 
monitoring were then analysed using a self-organising map; a two-dimensional graphical 
layout consists of neurons arranged in contact with one another. The results demonstrate 
that such a map is efficient in providing early warning regarding turbomachinery’s health 
conditions. 
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1. Introduction  

The unscheduled downtime of turbomachinery in critical industries, such as oil and gas, 
power generation, petrochemical, and aviation, results in large financial losses to the 
industries. In addition, component failure, such as blade, bearing, shaft, and gear failure, 
may lead to a catastrophic failure that threatens human life. Oil and gas plants in Malaysia 
are implementing machinery condition monitoring and fault detection by observing the 
equipment parameters, such as temperature, pressure, vibration levels, and operating 
speeds, at various machine locations. This paper presents a case study of a gas turbine that 
was operating within its original equipment manufacturer (OEM) limits, but was found to 
have obvious damage on multiple blades during its periodic and borescope inspection, as 
depicted in Figure 1. Gas turbine condition monitoring and fault detection solely based on 
the OEM limits are thus deemed to be insufficient. The hypothesis of this study is that the 
faulty machine parameters are deemed to be outliers in a self-organising map (SOM) when 
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the SOM is generated by using all historical machine parameters. This paper explores the 
feasibility of SOM to provide insight into gas turbine health conditions. The SOM concept 
will be introduced in the following section. 

 

 

Figure 1: Multiple instances of blade damage were found during the periodic and 
borescope inspection of the gas turbine 

 

2. Self-Organising Map 

A self-organising map (SOM) is an unsupervised machine learning technique inspired by 
an artificial neural network (ANN), which mimics the human brain in processing signals. 
This map was developed for clustering applications by grouping data based on their 
similarity. As the name implies, an SOM, represented in a two-dimensional graphical 
layout, consists of neurons arranged in contact with one another. It varies from a typical 
ANN-correlated input-output; using hidden layers via error feedback minimisation, an 
SOM applies competitive learning with the objective of visualising a high-dimension 
complex space in a straightforward manner. An SOM consists of a competitive layer, which 
can classify a dataset with any number of features into as many classes as the layer has 
neurons. An SOM recognises input data with similar characteristics or patterns and 
assembles identified groups as neighbourhood neurons. The associated topology-
preserving maps are established by assigning a unique weighting factor to each neuron 
corresponding to the similarities. For every iterative training cycle, an SOM refines the 
input neuron locations, weighing factor, and weighing equations in expectation of a mature 
form of cluster mapping. The overview of the SOM training process is displayed in Figure 
2.  
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Figure 2: Overview of SOM training cycle 

 

Self-organising maps have been implemented in various applications such as machinery 
health assessments [1–6], as well as in the fields of medicine [7–9], finance [10], and 
energy [11]. On the one hand, the adaptive nature of an SOM has recently been recognised 
in a range of applications, particularly in non-linear structure mapping, dimensional 
reduction, and clustering illustrations. On the other hand, an unsupervised SOM could not 
only potentially reduce premature output class labelling, but could also be capable of 
generating feature maps for visual aid purposes. For instance, an SOM has been found to 
be notably effective in candidate evaluation for genetics pool, topological collaborative 
clustering, and harmony memory embedded multi-layer deep learning [12–14]; cost-
effective data collection tracking [15]; intrusion dynamic systems accommodating 
dynamic vehicle ad hoc networks model [16]; potential disaster risk assessment [17]; and 
contaminated water image processing corresponding to Caenorhabditis elegans activity 
[18]. 

 

3. Data Collection and Machine Trending 

This section provides a brief summary of the data collection methodology relating to the 
data used in this research. The machine parameters used in this study and their 
corresponding measurement units are listed in Table 1. The parameters were logged half-
hourly into the turbomachinery condition monitoring system from 1st October, 2016 to 31st 
October, 2017.  
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Table 1: Machine parameters used in this study 

Machine Parameter Labelling Unit 
Gas generator rotor speed GG SPEED RPM 
Power turbine rotor speed PT SPEED RPM 
Compressor vibration (displacement) GG VIB (DISPL) micron 
Compressor vibration (velocity) GG VIB (VEL) mm/s 
Compressor inlet temperature T2 °C 
Compressor discharge temperature T3 °C 
Compressor discharge pressure PCD bar(g) 
Power turbine inlet temperature T5.4 °C 
Exhaust temperature T EXHAUST °C 

 

Figure 3 illustrates the measurement locations of each machine parameter, and Figures 4–
6 present the trending of various machine parameters recorded in a year. The gas generator 
rotor speed at 0 RPM shown in Figure 4 represents machine outage during that particular 
period of time. In addition, the green lines in Figures 4–6 denote the upper and lower limits 
suggested by the OEM, whilst magenta and red lines represent alarm and trip limits 
respectively.  

 

 

Figure 3: Measurement locations of the machine parameter 
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Figure 4: Gas generator rotor speed, power turbine rotor speed, and compressor vibration 
displacement of a gas turbine (green line: upper and lower limits; magenta line: alarm 

limit; red line: trip limit) 
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Figure 5: Compressor vibration velocity, compressor inlet temperature, and compressor 
discharge temperature of a gas turbine (green line: upper and lower limits; magenta line: 

alarm limit; red line: trip limit) 
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Figure 6: Compressor discharge pressure, power turbine inlet temperature, and exhaust 
temperature of a gas turbine (green line: upper and lower limits; magenta line: alarm 

limit; red line: trip limit) 

 

The SOM used in this study consists of 10 neurons in each dimension. The two-
dimensional map is capable of classifying the weekly machine parameters collected on a 
half-hourly basis into 100 categories based on their similarity of characteristics. The 
machine parameters during machine outage were first omitted. Given that the machine 
parameters during machine operation fluctuate, and the fluctuation range between machine 
parameters is rather inconsistent, the machine parameters were then normalised by scaling 
between 0 and 1 before they were input into the SOM algorithm. The SOM sample hits 
obtained from the SOM algorithm are described in the next chapter. 
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4. Results and Discussion  

The purpose of this study was to evaluate the collected machine parameters on a weekly 
basis to identify the change in the data characteristics, thereby allowing for early machinery 
faults to be determined. The hypothesis of this study is that the faulty machine parameters 
are deemed to be outliers in an SOM when the SOM is generated by using all historical 
machine parameters. Figure 7 presents a typical SOM sample hit; the number in each 
hexagon represents the number of machine parameters that were classified into the neuron. 
The machine parameters that were classified into a neuron or its neighbouring neurons have 
higher similarity compared to machine parameters that were classified into neurons located 
further away. Therefore, a dataset with similar characteristics will be distributed evenly 
across all neurons, as illustrated in Figure 7.  

 

 

Figure 7: An SOM based on data collected from 1st to 7th October, 2016 (Baseline) 

 

When a dataset consists of outliers, then an SOM shall present a map with the majority of 
data distributed across most of the neurons. However, some data were concentrated in a 
smaller number of neurons, as depicted in Figure 8 (lower right corner highlighted in red).  
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Figure 8: An SOM based on data collected from 1st October, 2016 to 23rd January, 2017 

 

The initial objective of this study was to identify the abnormality of a gas turbine from its 
trending machine parameters. In the SOM of the first week’s dataset shown in Figure 7, 
the dataset was found to be distributed across all neurons. This indicated that all data in the 
first week have similar characteristics, and this was assumed to be the baseline of the gas 
turbine. On the other hand, a significant change in the SOM is observed in Figure 8. The 
SOM was constructed based on data collected from 1st October, 2016 to 23rd January, 2017. 
Figure 8 demonstrates that a small cluster was formed in the SOM, and this indicates that 
outliers existed in the dataset. It can thus be suggested that the gas turbine was operating 
in a condition that was different from the initial operating condition in October 2016.  

 

Another major change of the SOM was found in the SOM constructed with data collected 
up to 29th June, 2017, as shown in Figure 9. The collected data were clearly spilt into two 
classes. A possible explanation for this might be that the gas turbine was operating in a 
condition that was different from its baseline and that this continued for a certain period of 
time. Thus, the number of outliers in Figure 8 was increased and grew into a larger group, 
as illustrated in Figure 9.  
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Figure 9: An SOM based on data collected from 1st October, 2016 to 29th June, 2017 

 

Figure 10 presents an SOM constructed with the whole year’s dataset; the data were 
clustered into two groups. These findings suggest that the gas turbine’s operating condition 
was changed as early as 23rd January, 2017, and it may indicate that machine faults were 
developed at this stage. If the operator was triggered by this change, then the operator may 
take a step forward to thoroughly analyse the data collected to identify the machine faults, 
rather than assuming that the machine is running at a normal condition as all collected data 
were within the OEM limits. This study has been verified by the periodic and borescope 
inspection that was conducted on 15th November, 2017, when blade damage was found on 
multiple blades. 
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Figure 10: An SOM based on data collected from 1st October, 2016 to 26th October, 2017 

 

5. Conclusion  

This study set out to identify significant changes in the data collected over a year, even 
though all collected data were within the OEM limits. This study identified that an initial 
change in the characteristics of the collected data took place on 23rd January, 2017. The 
results of this study indicate that an SOM is capable of machine health monitoring, which 
would allow an operator to take early action. 
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