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In real industrial stress/strain analysis applications, calculating equivalent constant amplitude 

cycles is important. Rainflow counting is a process to obtain equivalent constant amplitude 

cycles. The method is designed to count reversals in accordance with the material's 

stress/strain relationship including hysteresis loops. However, Rainflow counting needs to identify 

the peaks/valleys in the collected sensor signal and it is sensitive to noise.  In this paper, a novel 

approach is proposed to count the fatigue cycles.  The approach first uses empirical mode 

decomposition method to decompose the signal adaptively. Then a systematic count method is 

developed to calculate the cycles based on the decomposed signal components. The effectiveness 

and the performance of this method are compared with the Rainflow counting algorithm on 

simulated data with different frequencies and levels of noise.   
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1. Introduction 
 

Fatigue analysis is one of the main challenges in man-made structures health monitoring. It is more 

challenging these days due to excessive usage of modern technology. Advances in the field of 

fatigue monitoring helped to reduce the amount of failure in structures. Recent understanding of 

how the materials fail has been considerably increased in the recent years. 

 

One of the main factors in fatigue analysis is calculating the number cycles (i.e. loading history). 

There are different methods to estimate this number. One very popular method is Rainflow 

counting, which was first proposed by Matsuishi and Endo[1] . It is now widely applied to estimate 

the fatigue cycles in different industry applications, such as, railway, aircraft, bridge, and 



automotive industries [2, 3, 4].  However, Rainflow counting algorithm has a complicated 

procedure, which makes it difficult to apply when their statistical properties are to be studied [5, 

6]. Moreover, Rainflow counting algorithm is very sensitive to noise as it is depending on the local 

minima and local maxima of the sensor signal. 

 

In this paper, a new stress cycle counting algorithm has been developed.  The approach first uses 

empirical mode decomposition to decompose the signal into different narrowband signals and then 

estimates the stress counts based on the decomposed signals. The performance of the developed 

method is evaluated with simulated data with different frequency and noise levels.  The reminder 

of the paper is organized as follow.  Section 2 describes the Rainflow counting algorithm, empirical 

mode decomposition (EMD) and the proposed framework.  Section 3 presents a case study 

comparing the Rainflow counting algorithm and the developed method. Section 4 summarizes the 

work and concludes this paper.  

 
2. Theoretic Basis 

2.1 Rainflow counting algorithm  
 

Rainflow counting algorithm is widely used in estimating the stress cycles of the structure [7].  The 

procedure of conducting the Rainflow counting algorithm can be summarized in the following five 

steps [8], 

Assume X denotes range under consideration; Y denotes the previous range adjacent to X; and S 

denotes the starting point in the stress history. 

(a) Read next peak or trough. If out of data, go to step (f). 

(b) If there are less than three points, go to step (a). Form ranges X and Y using the three most 

recent peaks and trough that have not been discarded.  

(c) Compare the absolute values of ranges X and Y.  

 If X < Y, go to step (a). 

 If X > Y, go to step (d).  

(d) If range Y contains the starting point S, go to step (e); otherwise, count range Y as one cycle; 

discard the peak and trough of Y and go to step (b).  

(e) Count range Y as one-half cycle; discard the first point in range Y; move the starting point to 

the second point in range Y and go to (b).  



(f) Count each range that has not been previously counted as one-half cycle.  

 

 
Figure 1. Example Stress vs Time Plot 

A simple example is applied here to illustrate how Rainflow counting algorithm works.  The stress 

versus time plot is shown in Figure 1.  And the number of cycles corresponding to stress range 

illustrated in Fig. 3 is summarized in Table I. 

Table I. Stess cycle count 

Path Cycles Sress 
Range 

A-B 0.5 5 
B-C 0.5 6 
C-D 0.5 9 
D-G 0.5 9 
E-F 1.0 4 
G-H 0.5 8 
H-I 0.5 6 

 
 

2.2 Empirical mode decomposition 
 

EMD was first proposed by Huang et al. as part of the Hilbert–Huang transform (HHT) [9]. 

Recently, EMD has been widely applied in different fields, such as acoustic emission signal 

processing [10], medical image processing [11], vibration analysis [12].  

 

Assuming X represent the time series of the signal, the procedures of implementing the EMD 

algorithm is shown below,  

 (a) Find the local maxima and local minima of the signals.  

 (b) Construct the lower and upper envelopes of the signals by the cubic spline based on the 

 local maxima and local minima, respectively. 

 (c) Calculate the mean values m(t) by averaging the lower envelope and the upper envelope.  



 (d) Subtract the mean values from the original signals to produce the IMF candidate 

 component h1(t) = X(t) − m(t). If it is the true IMF, go to the next step. In addition, the 

 IMF component Ci(t) = hm(t) is saved. If it is not the IMF, repeat Steps a)–d). The stop 

 condition for the iteration is given by  
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 where  hm−1(t) and hm(t) denote the IMF candidates of the m − 1 and m iterations, 

 respectively,  and, usually, SD is set between 0.2 and 0.3.  

 (e) Calculate the residual component by subtracting the IMF component obtained in Step 

 d)  from the original signals resi(t) = X(t) − Ci(t). This residual component is treated as 

 new data and is subjected to the same processes described previously to calculate the next 

 IMF component.  

 (f) Repeat Steps a)–e) until the final residual component becomes a monotonic function 

 and no more IMF component can be extracted or the envelopes become smaller than a 

 predetermined value. Through Steps a)–f), the original signals X. 

 

A simulated example is used here to demonstrate how EMD process works.  In the simulation, we 

add two sine waves (0.2 Hz and 3 Hz) together to generate a synthetic data. EMD is applied to 

decompose the signal into different components.  From the Figure 2, we could see that the synthetic 

signal has been successfully separated into two components with 0.2 Hz and 3 Hz respectively.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Simulated signal and IMF decomposition components 
 
 

2.3 EMD-based Stress Cycle Counting Methodology 
 

The framework of the developed methodology is shown in Figure 3.   

 

 

 

 

Figure 3. The framework of the developed methodology 
 

As shown in Figure 3, the mean is first estimated and removed from the collected strain data.  The 

estimated mean value is also used as the mean stress for fatigue analysis.  Then the EMD is applied 

to decompose the strain data with mean value removed into multiple IMF components.  To make 

the developed algorithm more robust to the noise, the energy ratios between each IMF component 

and the original signal are estimated and a threshold is set to remove any IMF component with 
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energy ratio less than the threshold value.  In this paper, 0.1 is used as the threshold to remove the 

IMF components.  The energy ratio is calculated by using the following equation. 
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where, IMFk  is the kth IMF component, X is the original signal, i is the ith sampling point, and N 

is the number of the sampling points of signal X.   

For stress cycle counting, the zero crossings of each selected ith IMF component are counted as 

fatigue cycles  (Ni) and the amplitude between zero crossings are calculated as the alternating stress 

(𝜎𝜎𝑎𝑎𝑎𝑎) to be used for Nf calculation .  After the cycle counts and its corresponding alternating stress 

have been estimated, they are combined with the mean stress (𝜎𝜎𝑚𝑚), which is the mean value of the 

original signal, to calculate the fatigue damage.  The following equation is used to compute the 

accumulative fatigue damage (AFD). 
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Where Ni is the number of cycles in ith IMF component, k is the total number of the selected IMFs, 

and Nfi in the ith IMF is calculated as following, 
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where σu is ultimate stress, which is a material property, 𝜎𝜎𝑎𝑎𝑎𝑎 is the alternating stress of the ith IMF 

component, 𝜎𝜎𝑚𝑚 is the mean stress, and intercept and slope are two constant related to material 

property.  

 
 

3. Experimental Analysis 
 

We have simulated five groups of signals.  The simulated signals are composed by sine wave, 

random noise and a constant offset.  For each group, it contains 100 simulated datasets with same 

level Gaussian noise.  The simulated signals in group 1 have the lowest frequency content for sine 



wave and those in group 5 have the highest frequency content for sine wave. For each dataset, 200 

Hz sampling frequency is used and 10 seconds’ signal is simulated.   

To obtain the accumulative fatigue value, a fatigue curve for a typical material (1050HR) was 

considered in this analysis. The relationship between number of cycles before failure (Nf) and 

corrected alternating stress (σ0) is shown below 

 

Nf = 1.298 × 1038 × σ0−12.853   

 

Where 

σ0 =
σa
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Where σa is alternating stress, σm is mean stress and σu is ultimate stress (630 MPa for 1050HR). 

For each cycle, corrected alternating stress (σ0) and number of cycles before failure (Nf) need to 

be calculated. The accumulative damage (AFD) is introduced by N/Nf .  

 

An example of the theoretical value for damage due to a 4.5 cycles of sine wave with 215 amplitude 

is summarized in table II. 

 

Table II Theoretical damage 

σa σm N σ0 Nf 
AFD 

(N/Nf) 

215 450 4.5 439.0 14,132 3.184E-04 

      

 

All damage calculation for Rainflow and EMD are compared with their theoretical values. The 

calculated cycles are converted to be the AFD based on the SN curve approach described above. 

The performance of each model is measured by the percentage of the ratio difference, which is 

defined in the following equation.  
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where 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 is the AFD for ith signal in the same group, 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the theoretical AFD for that 

group, J is the number of the signals in that group. The performance comparison is shown in Table 

III.   

 

Table III Average of Error Percentage of different models 

 Rainflow 
counting 

EMD 
counting 

Error 
percentage 

Group 1 
9.8% 5.02% 

Error 
percentage 

Group 2 
13.17% 5.47% 

Error 
percentage 

Group 3 
9.17% 7.89% 

Error 
percentage 

Group 4 
14.7% 12.59% 

Error 
percentage 

Group 5 
19.99% 15.24% 

 

From the results in Table III, one could see that EMD based counting approach works better than 

Rainflow counting algorithm, especially when the noise level is high.   

 
4. Conclusions 

 
In this paper, a novel robust approach was developed to count the fatigue cycles.  The approach 

applied EMD algorithms to decompose the signal into IMFs. The stress cycles are estimated based 

on the IMFs. The performance of the developed method was evaluated with simulated data with 

different level of noise added to the signal.  The experimental results had shown that the developed 

EMD based stress cycle counting algorithm outperformed the Rainflow counting algorithm and 

was more robust to the signal with noise.  
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