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Abstract:  Planet bearing fault identification is an attractive but challenging task in 
numerous engineering applications, such as wind turbine and helicopter transmission 
systems. However, traditional fault characteristic frequency identification and impulsive 
feature extraction based diagnosis strategies are not sufficient to resolve the problem of 
planet bearing fault detection, due to complex physical configurations and modulation 
characteristics in planetary gearboxes. In this paper, a novel discriminative dictionary 
learning based sparse representation classification (SRC) framework is proposed for 
intelligent planet bearing fault identification. Within our approach, the optimization 
objective for discriminative dictionary learning introduces a label consistent constraint 
called ‘discriminative sparse code error’ and incorporates it with the reconstruction error 
and classification error to bridge the gap between the classical dictionary learning and 
classifier training. Therefore, not only the reconstructive and discriminative dictionary for 
signal sparse representation but also an optimal universal multiclass classifier for 
classification tasks could be simultaneously learnt in the proposed framework. The 
optimization formulation could be efficiently solved using the well-known K-SVD 
dictionary learning algorithm. The effectiveness of the proposed framework has been 
validated using experimental planet bearing vibration signals. Comparative results 
demonstrate that our framework outperforms the state-of-the-art K-SVD based SRC 
method in terms of classification accuracy for intelligent planet bearing fault identification. 
 
Key words: Planet bearing; Fault identification; Discriminative dictionary learning; Sparse 
representation classification; K-SVD; Orthogonal matching pursuit. 

1. INTRODUCTION 

Planetary gearbox possesses attractive advantages such as large transmission ratio and 
excellent load-bearing capacity in a relatively compact structure, which make it widely 
applied in many engineering applications such as wind turbine and helicopter 
transmissions. Failures of planetary gearbox will not only reduce the reliability of 
engineering system but also lead to great operation and maintenance (O&M) costs. 
Vibration-based fault detection technique has been proven as one of the most effective 
techniques for condition monitoring and O&M costs saving for planetary gearbox [1]. 
However, vibration signals of planetary gearbox are more complicated than the parallel 
gearbox due to the complex physical configuration and kinematic mechanism. As 
illustrated in Figure 1(a), planetary gearbox comprises four main components, including 
ring gear, sun gear, planet carrier and multiple planet gears. Concerning the kinematic 
mechanism of planetary gearbox, sun gear rotates around its fixed axis while multiple 
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planet gears not only rotate around their own centers but also revolve around the sun gear, 
as shown in Figure 1(b). As a result, the vibration transmission paths between meshing 
points of ring-planet or sun-planet gear pairs and the fixed sensor are periodically varying 
due to the revolving nature of planet gears [2]. Therefore, vibration-based fault diagnosis 
of planetary gearbox is challenging due to the complex physical configurations and 
revolving planet gears inducing modulation characteristics [3]. 
 

 

Figure 1: Physical Configurations of Planetary Gearbox and Kinematic Mechanism of 
Planet Bearings. 

To address above challenges, many signal processing approaches have been developed for 
planetary gearbox fault diagnosis, such as statistical analysis [4], spectral kurtosis [5], time 
synchronous averaging [6], wavelet transform [7-8], demodulation analysis [9-10] and time 
frequency representation method [11]. Within these approaches, periodicity or time-
varying characteristic frequency of fault-related features are analyzed to isolate the fault 
location, because the localized defect during meshing process will produce local anomalies 
repetitively and each gear has fault characteristic frequency proportional to the rotational 
frequency. To a certain extent, these contributions have successfully provided feasible 
means to address planetary gearbox fault detection. However, these reported literatures 
have been restricted to planetary gear fault detection and rarely devoted to identifying the 
planet bearing fault. 
 
Planet bearing, as the most intricate component in term of kinematic mechanism, is also 
the most challenging component for fault identification in planetary gearbox. As illustrated 
in Figure1(c), the outer ring of planet bearing, which is fixed to the planet gear, not only 
rotates around its own center but also revolves around the sun gear. On the other hand, the 
inner ring stays relatively stationary to the planet carrier and only revolves around the sun 
gear. Therefore, vibration signature of planet bearings is complicated and significantly 
different from the common fixed-axis bearings due to the complex and time-varying 
vibration transmission paths. To understand the dynamic behavior of planetary gearbox 
containing localized planet bearing defects, Jain et al. first developed an analytical model 
to predict vibration signatures of the faulty planetary gearbox with localized planet bearing 
defects [12] and further predicted the fault signatures of planet bearing defects by 
identifying different sources of modulation sidebands [13]. Inspired by these thoughts, 
Feng et al. [14] developed analytical vibration signal models for defective planet bearings. 
Moreover, amplitude and frequency demodulation analyses were applied to identify the 
fault characteristic frequencies in demodulation spectrums of defective planet bearing 
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vibration signals [15]. To locate the resonance frequency bands induced by planet bearing 
defects, Wang et al. proposed meshing frequency modulation index-based kurtogram [16] 
for filter design to detect planet bearing defects by identifying fault characteristic 
frequencies in envelope spectrums. These contributions have provided deep insights into 
understanding the vibration behavior of planetary gearbox in presence of defective planet 
bearings. 
 
However, these reported literatures are only to reveal the frequency features for faulty 
planetary gearbox with planet bearing defects. These frequency features are too weak to 
identify due to the following reasons. First, the performance of the frequency feature based 
fault detection algorithms deteriorates easily due to planet bearing manufacturing error, 
misalignment and low- torque operating condition [17]. Second, vibration signatures of 
planet bearing are overwhelmed by gear meshing vibrations and other unwanted 
background noises [8, 16]. Third, the planet bearing defect-induced resonance frequency 
bands are very hard to determine for fault feature extraction due to heavy interferences 
from planetary gear meshing vibrations. Thus, these issues greatly challenge the fault 
characteristic frequency identification based diagnosis strategies. 
 
Alternatively, classification-based intelligent identification approaches, which are free of 
detecting the weak frequency features induced by planet bearing defects, are more 
attractive and promising for planet bearing fault identification. Recently, dictionary 
learning based sparse representation classification (SRC) techniques have attracted 
extensive attentions in a wide range of academic communities such as image classification 
[18], face recognition [19] and computer vision [20]. The classical dictionary learning 
framework attempts to adaptively learn an overcomplete dictionary D∈Rn×K containing K 
signal-atoms of columns {dj}Kj=1 so that the input signal Y∈Rn×N could be well 
approximated using sparse linear combinations of these atoms Y≈DX in terms of minimal 
reconstruction error 2

F
−Y DX   [21]. Inspired by the merits of dictionary learning, the 

dictionary learning based SRC approaches have been developed for image classification 
[22-23] and fault identification [24]. Within the classical dictionary learning based SRC 
approach in [22], the main idea is to learn sub-dictionaries first for sparse representation of 
training signals from each category independently and then achieve the recognition tasks 
based on the corresponding reconstruction errors. Inspired by this idea, Zhao et al. [24] 
proposed the sparse representation classification for planet bearing fault identification, 
which achieved the recognition according to the minimal reconstruction error of testing 
signals with respect to these learned sub-dictionaries directly. However, these classical 
dictionary learning based SRC approaches only exploit the reconstruction power (best 
sparse representation of training signals for minimal reconstruction error) but neglect the 
discriminative power of the learned dictionary for recognition tasks. In contrast, a 
discriminative dictionary was achieved for pattern recognition by iteratively updating 
dictionary atoms based on the results of a linear predictive classifier [23]. In addition, the 
approach in [25] first learned a representative dictionary and then implemented the 
classifier training for recognition tasks. Nevertheless, these dictionary learning based SRC 
approaches treat the dictionary learning and classifier training as two separate processes, 
which might make the learned dictionary suboptimal for classification tasks. Therefore, 
learning a discriminative dictionary by identifying the discriminability of sparse codes and 
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training the classifier model simultaneously in a supervised manner, could be promising to 
achieve better classification performance, which stimulated the idea of the discriminative 
dictionary learning based sparse representation classification framework in this paper. 
 
In summary, to avoid the dilemmas of the frequency feature based diagnosis strategies for 
planet bearing fault identification and address the challenges for classical dictionary 
learning based SRC approaches, we propose a novel discriminative dictionary learning 
based sparse representation classification (DDL-SRC) framework for intelligent fault 
identification of planet bearings. The key features and contributions of this paper are 
presented as follows: 
 
 To exploit class labels of training signals for supervised dictionary learning, the label 

information are associated with each dictionary atom to enforce the discriminability of 
sparse codes during dictionary learning process. Mathematically, we introduce a 
discriminative sparse code error into the optimization objective in the DDL-SRC 
framework. 

 In addition to the reconstruction error for representative dictionary purpose, the 
discriminative sparse code error for discriminative dictionary purpose and the 
classification error for classifier training are jointly incorporated into the mixed 
optimization objective. Therefore, the proposed DDL-SRC framework could learn not 
only a discriminative dictionary but also an optimal multiclass classifier simultaneously 
to achieve better classification performance. 

 The optimization problem in the proposed DDL-SRC framework could be efficiently 
solved with complexity bounded by the K-means Singular value decomposition (K-
SVD) algorithm. 

 In contrast to other existing pattern recognition methods, the proposed DDL-SRC 
framework is free of feature design and selection, which achieves the intelligent 
classification tasks via discriminative dictionary learning and classifier training directly 
from raw training signals. 

 The DDL-SRC framework has been extended to achieve the intelligent fault 
identification of planet bearings and outperforms the state-of-the-art SRC method. 

 
The rest of this paper is organized as follows: Section 2 presents the proposed DDL-SRC 
framework for intelligent fault identification, which involves discriminative dictionary 
learning, classification approach and intelligent fault identification for mechanical 
components. Section 3 validates the effectiveness of the DDL-SRC framework for 
intelligent fault identification of planet bearings using experimental data. Finally, 
conclusions are summarized in Section 4. 

2. DISCRIMINATIVE DICTIONARY LEARNING BASED SPARSE REPRESENTATION 
CLASSIFICATION FRAMEWORK FOR INTELLIGENT FAULT IDENTIFICATION 

In order to enhance the discriminative power of dictionary learning for classification tasks, 
learning a discriminative dictionary along with an optimal multiclass classifier 
simultaneously and leveraging the discriminability of sparse codes is preferred. To this end, 
the discriminative dictionary learning based sparse representation (DDL-SRC) framework 
is proposed for intelligent fault identification, which involves three procedures: 
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discriminative dictionary learning, classification approach and intelligent fault 
identification for mechanical components. 
 
2.1 Discriminative Dictionary Learning 

The discriminative dictionary learning aims to learn a reconstructive and discriminative 
dictionary and an optimal linear classifier simultaneously, which could bridge the gap 
between classical dictionary learning and classifier training in traditional SRC methods. 
 
2.1.1 Optimization objective considering discriminative sparse codes and classifier 
training 

In the discriminative dictionary learning, we aim to unify the dictionary learning and 
classifier training processes into one mixed optimization objective. In addition, the 
performance of linear classifier depends on the discriminability of sparse codes. As such, 
we prefer the supervised learning manner to leverage the label information of training 
signals for learning a reconstructive and discriminative dictionary. To this end, dictionary 
atoms should be chosen so that they represent a subset of the training signals ideally from 
one single class, and hence each dictionary atom will be associated with a particular label 
in our approach (see Figure2). Ideally, the discriminative sparse codes will be obtained 
over a discriminative dictionary, if we establish the explicit correspondences between 
dictionary atoms and the label information in a supervised fashion. The sparse 
representation using ideal discriminative sparse codes for optimal classification [27] is 
illustrated in Figure2. The ideal sparse codes Q are considered discriminative and optimal 
for classification tasks if Q = [q1, q2,…,qN]∈RK×N where qi is of the form of [0,...,1, 1, 
1,..,0]T∈RK. Taking the case in Figure2 as an example, training signal matrix Y = [Y1, Y2, 
Y3] contains training signals from three classes, where Y1 contains three samples y1, y2, y3, 
Y2 contains four samples y4, y5, y6, y7, and Y3 contains two samples y8, y9. Dictionary D 
contains three sub-dictionaries for each class and each sub-dictionary Dl has three atoms. 
In this case, the resulting discriminative sparse codes are illustrated in Figure 2. 
 

 

Figure 2: Sparse Representation Using Ideal Discriminative Sparse Codes for Optimal 
Classification. 

Suppose a set of N n-dimension input signals Y = [y1, y2, …, yN]∈Rn×N, the optimization 
objective for discriminative dictionary learning could be defined as follows: 
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2 2 2

0, , ,
, , , arg min . . , iF F F

s t i x Tα β= − + − + − ∀ ≤
D W A X

D W A X Y DX Q AX H WX , (1) 
 
where X = [x1, x2, …, xN]∈RK×N are the sparse codes of the input signals Y with respect to 
dictionary D = [d1, d2, …, dK]∈Rn×K. A∈RK×K represents a linear transformation, which 
is designed to transform the obtained sparse codes X to be most discriminative in sparse 
feature space. W∈RL×K denotes the linear classifier model parameters and H = [h1, h2, …, 
hN]∈RL×N associates the label hi with each training signal yi. The first term in Equation (1) 
represents the reconstruction error. The second term in Equation (1) represents the 
discriminative sparse codes error, which enforces the sparse codes X to approximate the 
ideal discriminative sparse codes Q. The third term in Equation (1) represents the 
classification error, which encourages achieving a relatively optimal classifier model 
parameters W for recognition tasks. Regularization parameters α and β control the relative 
contributions of the corresponding terms, respectively. 
 
As a result, the above optimization objective for discriminative dictionary learning not only 
considers the reconstruction error, but also incorporates the discriminative sparse codes 
error and the classification error terms by leveraging the supervised information (label 
information H and discriminative sparse codes Q). Therefore, this optimization objective 
is promising to learn a discriminative dictionary D and an optimal linear classifier jointly 
for classification tasks. 
 
2.1.2 Numerical optimization algorithm 

In this subsection, we will demonstrate that the proposed discriminative dictionary learning 
could be cast as a standard dictionary learning problem and solved using the well-known 
K-SVD algorithm. The proposed optimization objective in Equation (1) could be rewritten 
as follows: 
 

2

0, , ,
, , , arg min , . . , i

F

s t i x Tα α

β β

   
   

= − ∀ ≤   
   
   

D W A X

Y D

D W A X Q A X

H W

, (2) 

 
Through defining the generalized training signal matrix new ( , , )T T T Tα β=Y Y Q H   and 
dictionary matrix new ( , , )T T T Tα β=D D A W  , the optimization objective can be 
reformulated as follows, 
 

new

2
new new new 0,

, arg min , . . , iF
s t i x T= − ∀ ≤

D X
D X Y D X , (3) 

 
Consequently, this equivalent optimization is exactly the standard dictionary learning 
problem and can be efficiently solved by K-SVD algorithm. 
 
Following the well-known K-SVD algorithm, we implement sparse coding and dictionary 
updating procedures alternately. In our approach, we utilize the OMP algorithm to 
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accomplish the sparse coding. Within the dictionary updating procedure, we update one 
dictionary atom new

kd and the associated nonzero sparse codes at a time for best reducing the 
optimization objective using SVD [18]. Let new

kd  be the k-th atom in dictionary Dnew and 
k
Rx  denotes the k-th row in sparse codes X. In addition, we define new

new( )j
k j Rj k

d x
≠

= −∑E Y , 
k
Rx  denotes the results of discarding the zero entries in k

Rx  and kE  denotes the resulting Ek 
by discarding the corresponding columns. Hence, dictionary updating can be achieved by 
solving the following problem, 
 

new

2new new

,
, arg min

k
k R

k k
k R k k R Fd x

d x d x= −E  , (4) 
 
The problem in Equation (4) could be solved by SVD for kE , namely, T

k = ΣE U V . Then, 
the updated dictionary atom new

kd and the associated nonzero sparse code k
Rx  are computed 

as follows, 
 

new (:,1), = (1,1) (:,1)k
k Rd x= ΣU V . (5) 

 
Finally, nonzero entries in k

Rx   are correspondingly replaced by k
Rx  . The resulting 

discriminative dictionary learning algorithm is detailed in Algorithm 1, which learns D, A 
and W simultaneously, and thus could avoid the local minima problem [23] in traditional 
SRC methods. 
 

Algorithm 1 Discriminative dictionary learning 
Input: Y, Q, H, K, T, α, β 
Output: D̂ , Â ,Ŵ  
Initialize: compute D(0), A(0), W(0) (See Sec. 2.1.3) 
Initialize new ( , , )T T T Tα β=Y Y Q H , new ( , , )T T T Tα β=D D A W  and set J = 1. 
while: until J reaches the preset maximum number of iterations Jmax. 
 Sparse coding: compute sparse codes xi while keeping Dnew fixed. 

2*
new new 02

arg min . . ,
i

i
i i ix

x y x s t i x T= − ∀ ≤D  

 Dictionary update:  
For k = 1,…,K, repeat updating Dnew along with X as follows, 
(1) Compute kE  and perform SVD operation T

k = ΣE U V ; 
(2) Update new

kd  and k
Rx  by new (:,1), = (1,1) (:,1)k

k Rd x= ΣU V . 
 Set J = J+1. 

End while 
Obtain the desired D̂  , Â  ,Ŵ   from Dnew for classification using Equation 
(10). 

 
2.1.3 Implementation details 

In this subsection, several algorithm implementation details are presented, including 
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algorithm initializations and obtaining the desired dictionary and linear classifier from Dnew. 
 
(1) Initialization 
In the proposed discriminative dictionary learning algorithm, initializations for D(0), A(0) 
and W(0) are required. As for D(0), we could exploit the standard dictionary learning to 
obtain sub-dictionaries for each class using several times of K-SVD, and then concatenate 
these sub-dictionaries of each K-SVD to accomplish the initialization for D(0). Meanwhile, 
the label information H and discriminative sparse code Q could be determined according 
to the class information. As for A(0) and W(0), the multivariate ridge regression model [28] 
with quadratic loss and L2-norm regularization is employed, 
 

2 2
1arg min

F F
λ= − +

A
A Q AX A , (6) 

2 2
2arg min

F F
λ= − +

W
W H WX W . (7) 

 
The multivariate ridge regression models yield the solutions for A(0) and W(0) as follows, 
 

T T 1
1( )λ −= +A QX XX I , (8) 

T T 1
2( )λ −= +W HX XX I . (9) 

 
Therefore, provided the initialized dictionary D(0), we could compute sparse codes X(0) of 
training signals Y using OMP algorithm. Then A(0) and W(0) can be computed by Equation 
(8) and (9). 
 
(2) Obtaining the desired dictionary and linear classifier from Dnew 
The solution Dnew in Equation (3) could be efficiently achieved by K-SVD and the resulting 
Dnew is L2-norm normalized column-wise, i.e., ( )

2
, , , 1

TT T T
k k kk d a wα β∀ = . However, the 

directly extracted dictionary D = [d1, d2,…,dK] from Dnew, will not satisfy the column 
normalization constraint for sparse representation. Therefore, proper transformation from 
Dnew to the desired discriminative dictionary D̂   is required. This transformation can be 
achieved by normalizing the extracted dictionary D column-wise and scaling A and W 
correspondingly as follows, 
 

1 2

1 22 2 2

1 2

1 22 2 2

1 2

1 22 2 2

ˆ , ,...,

ˆ , ,...,

ˆ , ,...,

K

K

K

K

K

K

d d d
d d d

a a a
d d d

w w w
d d d

 
=  
  
 

=  
  
 

=  
  

D

A

W

, (10) 

 
Therefore, provided the learned dictionary Dnew, we could directly extract the dictionary D, 
linear transformation A = [a1, a2,…,aK] and classifier model W = [w1, w2,…,wK] from Dnew. 
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Besides, the desired ˆˆ ˆ( , , )D A W  could be computed using the learned ( , , )D A W  and Equation 
(10). 
 
2.2 Classification Approach 

Another critical procedure for the proposed DDL-SRC framework is the classification 
approach for recognition tasks. The classification in our DDL-SRC framework is carried 
out by two steps, namely sparse coding of testing signals and label estimation using 
classifier Ŵ . 
 
2.2.1 Sparse coding of testing signals 

For test signal yi, sparse coding could be achieved by solving the following problem, 
 

2*
02

ˆˆ ˆ ˆarg min , . . ,
i

i i i ix
x y x s t i x T= − ∀ ≤D , (11) 

 
The sparse coding could be efficiently solved using OMP algorithm [26]. 
 
2.2.2 Label estimation using classifier model 

Estimating the label information of test signal yi in the proposed framework is carried out 
according to the optimized sparse codes *ˆix  and the linear classifier model Ŵ . We simply 
employ the linear classifier to estimate the label vector *ˆ

ix=l W . The predicted label j* of yi 
is determined by the index corresponding to the largest absolute value in label vector as 
follows, 
 

* *
1

ˆarg max abs ( ), [ ,..., ]T
j i Lj

j l x l l= = =l W . (12) 
 
2.3 Intelligent Fault Identification for Mechanical Components 

In this section, we aim to extend the DDL-SRC framework for intelligent fault 
identification. To this end, we first propose an overlapping segmentation strategy for 
vibration signals and then summarize the overall procedures of the DDL-SRC framework 
for intelligent fault identification. 
 
2.3.1 Overlapping segmentation strategy for vibration signals 

Proper segmentation strategy is crucial to extract robust two-dimensional features from 
one-dimensional vibration signals. Periodic self-similarity is a robust feature in vibration 
signals of rotating machinery under stationary operating conditions. Hence, it is favorable 
to develop a wise segmentation strategy, which could take the best of self-similarity 
information and avoid the boundary artifacts between adjacent segments as well. To this 
end, we introduce a wise segmentation operator R to partition the original vibration signals 
into a set of local segments. The segmentation operator R is parameterized with two critical 
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parameters, namely the segmentation window size W and overlapping rate δ. The principle 
of segmentation operator is illustrated in Figure 3. Let y∈Rm denotes the original vibration 
signal, the segmentation operator : m W NR R ×R   maps original vibration signals y into a 
signal matrix Y∈RW×N as follows, 
 

[ ]1 2 1... ( )N N y y−= =

R
Y R R R R R


. 

(13) 

 
where the operator : m W

i R RR   represents the procedure that first takes the i-th segment 
from the original vibration signal y and then transposes the obtained segment, thus

T( ) (:, )i iy y i= =R Y . 
 
Taking into account the multi-state vibration signals with different health conditions of 
mechanical components, we could employ the overlapping segmentation operator R to 
transform original vibration signals of each state. Then, constructing the overall 
training/testing signal matrix is accomplished by concatenating all signal matrix for 
different states. This overall overlapping segmentation strategy for overall signal matrix 
construction is illustrated in Figure 3. 
 

 

Figure 3: Overlapping Segmentation Strategy for Vibration Signals 

As a result, the overlapping segmentation strategy could leverage the self-similarity feature 
maximally and construct the overall training/testing signal matrix, which serves as a 
premise for our proposed DDL-SRC framework for intelligent fault identification using 
vibration signals. 
 
2.3.2 Overall procedures of DDL-SRC framework for intelligent fault identification 

In this section, we summarize the overall algorithm procedures of the DDL-SRC 
framework for intelligent fault identification using vibration signals as follows. 
 
Step 1 Acquire vibration signals of mechanical components under various health 
conditions and construct training/testing signal matrixes using the overall overlapping 
segmentation strategy. 
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Step 2 Implement the discriminative dictionary learning algorithm for learning the 
discriminative dictionary and an optimal multiclass linear classifier model simultaneously. 
Step 3 Implement the sparse classification using the learned discriminative dictionary and 
predictive multiclass linear classifier model in step 2. 
Step 4 Achieve intelligent fault identification of mechanical components using the results 
of sparse representation classification. 

3. CASE STUDY: INTELLIGENT FAULT IDENTIFICATION FOR PLANET BEARINGS 

In this section, experiments and vibration measurements are conducted on a planetary 
gearbox test bench, which are used to validate the effectiveness of the proposed DDL-SRC 
framework for intelligent fault identification of planet bearings. In addition, the state-of-
the-art dictionary learning based sparse representation classification (DL-SRC) method in 
[24] is compared for demonstrating the superiority of the proposed framework. 
 
3.1 Experiment Description 

The planetary gearbox experiment setup is illustrated in Figure 4(a), which consists of a 
drive motor, an encoder for rotational speed measurement, a planetary gearbox, a magnetic 
powder brake for applying load and the vibration measurement system. To simulate the 
local defects in planet bearings, minor damages are introduced on surface of different 
planet bearing components using electrical discharge machining technique. As a result, 
vibration measurements could be performed on the planetary gearbox with four different 
health conditions (namely, healthy, outer ring defect, inner ring defect and rolling element 
defect), as illustrated in Figure 4(b). Detailed physical parameters of the planetary gearbox 
are listed in Table 1. As for the experiment measurement, the sun gear rotates at a constant 
frequency of 24.97 Hz and vibration signals are sampled at a frequency of 20480 Hz. 

Table 1: Physical Parameters of the Experimental Planetary Gearbox. 

Gear Tooth number Planet bearing Size (mm) 
Carrier -- Roller diameter 9 
Sun gear 13 Diameter of pitch circle 36 
Ring gear 92 Number of rollers 10 
Planet gear 38(3) Contact angle (°) 0 
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Figure 4: Planetary Gearbox Experiment Setup and Planet Bearings with Four Health 
Conditions. 

3.2 Planet Bearing Fault Identification 

Vibration signals of planetary gearbox with four different health conditions are measured 
in two different processes, the one of which with time duration of 60 seconds serve as the 
training signals and the other with time duration of 60 seconds serve as the testing signals 
for the proposed DDL-SRC framework. The time domain waveforms of vibration signals 
of planetary gearbox in presence of four different health conditions of planet bearings are 
illustrated in Figure 5. In order to reduce the computation burden of discriminative 
dictionary learning algorithm, all original vibration signals are downsampled at a sampling 
frequency of 1024 Hz. 
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Figure 5: Vibration Signals of Planetary Gearbox with Four Health Conditions of Planet 
Bearings. 

3.2.1 Intelligent identification of planet bearing defects 

In this subsection, we evaluate the effectiveness and superiority of the proposed DDL-SRC 
framework over the DL-SRC method in [24] for intelligent fault identification of planet 
bearings. 
 
In this experiment, dictionary size is set as 4350 such that an average of 1088 dictionary 
atoms corresponds to each health condition of planet bearing. The parameters for 
overlapping segmentation strategy are chosen that the segmentation window size W be 
1800 and overlapping rate δ be 0.97. Hence, both the training and testing signal matrixes 
for each health condition consist of 1105 samples. Besides, the sparsity threshold T and 
maximum iteration number Jmax are set as 4 and 35 for discriminative dictionary learning, 
respectively. The regularization parameters α=0.006 and β=0.001 are used in this case. As 
a result, the confusion matrix of the proposed DDL-SRC framework and classification 
performance including the comparison with the state-of-the-art DL-SRC method [24], are 
illustrated in Figure 6(a) and (b), respectively. 
 

  

Figure 6: Confusion Matrix of The Proposed DDL-SRC Framework and Classification 
Performance for Intelligent Fault Identification of Planet Bearings. 

As illustrated in Figure 6(a), the proposed DDL-SRC framework achieves no false 
prediction for healthy planet bearings and faulty planet bearings with outer ring defect. 
Additionally, the overall percentage of which the faulty planet bearing is wrongly predicted 
as the healthy one is as low as 0.045% (i.e., 2/(4*1105)). As a whole, the proposed DDL-
SRC framework achieves an excellent average identification accuracy as higher as 93.19% 
for intelligent fault identification of planet bearings in this general case. In contrast, our 
proposed framework always achieve better classification accuracy than the state-of-the-art 
DL-SRC method [44], as illustrated in Figure6(b). 
 
3.2.2 Parameter analysis 

In this subsection, we discuss the effects of related algorithm parameters on classification 
performance of the DDL-SRC framework. As for the fault identification of planet bearings 
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in this experiment, we evaluate several crucial algorithm parameters with cross-validation 
strategy. These parameters are divided into four different groups and each group of 
parameters will be discussed with other groups fixed. More specifically, we firstly analyze 
the effect of dictionary size K and with other parameters fixed. Then we will fix the 
dictionary size and check the performance of regularization parameters α and β. Next, the 
segmentation window size W and overlapping rate δ are discussed. Finally, the sparsity 
threshold T and maximum number of iterations Jmax for discriminative dictionary learning 
are validated. 
 
(1) Dictionary Size K. Dictionary size K determines the number of atoms in the learned 
dictionary. On the one hand, a higher dimension of feature subspace will contain more 
information so as to enhance the representational ability of dictionary. On the other hand, 
a higher dimension of dictionary will generally be more discriminative than a lower one 
for classification tasks [37]. To validate these two suggestions, dictionary size K is varied 
from 2400 to 4400 and the corresponding classification accuracies are illustrated in Figure 
7(a). It can be concluded that increasing the dictionary size will lead to a higher 
classification performance and the highest classification accuracy can be achieved around 
the maximum considered dictionary size. 
 

 

 

Figure 7: Parameter Analysis on Classification Performance. (a) Effect of Dictionary Size 
K; (B) Effect of Regularization Parameters α and β; (c) Enlarged Illustration of (b); (d) 
Effect of Segmentation Size W and Overlapping Rate δ; (e) Effect of Sparsity Threshold 

T and Maximum Number of Iterations Jmax; (f) Enlarged Illustration of (e). 

(2) Regularization parameters α and β. The regularization parameters determine the 
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in the optimization objective. A balanced pair of regularization parameters will lead to the 
desired dictionary with both reconstructive and discriminative power, and an optimal 
classifier model for classification tasks. To investigate their effects, both α and β are varied 
from 10-3 to 103 exponentially and the corresponding results are illustrated in Figure 7(b). 
By checking these classification accuracies, we can get the conclusions. Firstly, 
regularization parameters with relatively small values could lead to higher classification 
performance than pairs of regularization parameters with greater values. Secondly, the 
regularization parameters with the order of magnitude of 10-3 achieve the best classification 
accuracy in our task, as shown in Figure 7(c). 
 
(3) Segmentation window size W and overlapping rate δ. These two parameters influence 
the results of the overlapping segmentation strategy for vibration signals. In order to take 
the best of self-similarity information in vibration signals, we consider the cases with 
relatively large overlapping rate, namely δ=0.93:0.01:0.97, and varying segmentation sizes. 
The corresponding results are illustrated in Figure 7(d). By carefully checking these 
classification accuracies, we can get the following conclusions. Firstly, though there are 
few outliers like jump points, increasing the segmentation size generally could achieve a 
better classification performance. Secondly, the best classification accuracy using a higher 
overlapping rate is generally better than that using a lower overlapping rate, as illustrated 
by the ‘best classification accuracy curve’ in Figure 7(d). 
 
(4) Sparsity threshold T and maximum number of iterations Jmax. Finally, the effects of 
sparsity threshold and maximum number of iterations on classification accuracy are studied 
and illustrated in Figure 7(e) and (f). These two parameters mainly affect the discriminative 
dictionnary learning algorithm. The following conclusions can be drawn from Figure 7(e) 
and (f). Firstly, smaller sparsity thresholds T could lead to better classification performance 
than greater sparsity thresholds. Secondly, the classification accuracy is merely promoted 
very little as the increase of maximum number of iterations Jmax. In our experiment, 
sufficiently better classification performance could be obtained with 35 iterations. 
 
In summary, the proposed DDL-SRC framework is effective using proper algorithm 
parameters and outperforms the state-of-the-art DL-SRC method for fault identification of 
planet bearings, which indicates that it is promising to achieve intelligent machine fault 
diagnosis. 

4. CONCLUSION 

In this paper, a novel discriminative dictionary learning based sparse representation 
classification framework is proposed for intelligent fault identification of planet bearings. 
In contrast to traditional frequency feature based diagnostic strategies for planet bearing 
fault detction, the proposed framework could learn adaptive sparse features directly from 
raw vibration signals for reliable identification performance. The main conclusions are 
drawn as follows. 
 
(1) The proposed framework bridges the gap between the reconstructive dictionary 

learning and classifier training in classical sparse representation classification methods, 
by introducing a discriminative sparse code error term and incorporating it with the 
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reconstruction error and classification error into one mixed optimization formulation. 
(2) The proposed framework could learn a discriminative dictionary and an optimal 

multiclass linear classifier simultaneously for better classification performance over 
classical sparse representation classification methods. Additionally, the proposed 
discriminative dictionary learning problem could be efficiently solved by a simple 
extension of the K-SVD algorithm. 

(3) In contrast to other conventional classifier based pattern recognition methods, the 
proposed framework is free of feature design and selection. It can adaptively learn 
adaptive features from raw vibration signals for intelligent fault identification. 

(4) The proposed framework outperforms the existing state-of-the-art sparse representation 
classification method and achieves intelligent fault identification of planet bearings 
with the highest classification accuracy among all reported literatures. 
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