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Abstract: Belt-driven mechatronic systems are popular for a range of applications. A 
modified robotic manipulator was adapted to allow different belt-drive faults to be 
incorporated into the mechanism, with additional sensors to characterize the compromised 
kinematics. Different data-driven models were used studied to detect anomalies in motor 
power consumption and end-effector motion; and a physics-based, lumped-parameter 
dynamic model was used to identify different faults. Comparative assessment metrics were 
sdused to compare the performance of different fault models from sets of laboratory test data.  
 
Key words: Machinery diagnostics; fault detection; machine learning; modelling; robotics; 
analytics; belt drives, time-varying systems. 

1. INTRODUCTION 
 
Mechatronic systems are increasingly popular in a range of products to improve quality and 
production in a variety of different ways. Many mechatronic devices use belt-driven power 
transmission systems. Improved understanding of the failure modes and effects in belt drives 
would enable diagnostic and prognostic techniques for predictive maintenance. Diagnostic 
models can be based on an understanding of the physics of the system and the effects of 
progressing component failure, or on data collected from systems that incorporate the 
component of interest under a range of operating conditions.  
 
Physics-based models are used to represent a system using differential equations [1]. Within 
these differential equations, a variety of variables can be included in the model to accurately 
define the state of the system. A few examples of these factors include material properties, 
degrees of freedom, environmental and equipment specifications. The physics-based model 
provides an approximation of the response of a system to these factors. If the system has 
many of these parameters known and are appropriately integrated into the governing 
equations of the system, it is possible to estimate the other parameters and thereby calibrate a 
model that is an accurate representation of the physical system. By using this model, a 
response that varies from normal operating conditions in a way that relates to a change in a 
component indicates a fault in the system. Such a model can be used to simulate the effect of 
faults that can occur in the system. Bartelmus et al. [2] showed a case study of a dynamic 
model for fault detection in a real-world mechanical system.  
 



In industrial practice, fault diagnosis and maintenance are generally done based on the 
knowledge and expertise of the people working with the equipment [3]. From observable 
signs of damage or an understanding of the rate at which wear-out occurs, maintainers 
perform repairs based on condition or schedule. Process and condition monitoring datasets 
allow diagnostics to be automated, using data to determine what normal operating conditions 
are (with normal variability or even time-varying behaviour for non-steady state systems) and 
comparing new data to assess whether there is a system fault. A drawback of this method is 
that an observer is limited to the information that is available from sensors. Determining the 
appropriate type, number, and locations is critical for observing features that correlate well to 
developing faults [4].  
 
Faults can affect the system subtly, making them difficult to identify in the presence of other 
system effects and noise. The premise of data-driven diagnostics is that it is possible to 
observe features of faults of interest. The purpose of this study is to demonstrate the use of 
classical mechanical models and data driven analytical models on a robotic manipulator drive 
system operating cyclically under time-varying load.  
 
There are many ways that a belt-driven system can change over its operating lifetime. 
Examples of common faults include: belts that become loose or are installed too tightly, rapid 
changes in temperature that may affect the materials, dust or debris build up in the track, and 
loose nuts along the body that introduce vibrations of components that aren’t secured 
properly. Belts themselves are not instrumented in practice; but in this study, strain gauges 
were installed on the motor shaft to measure the torque output from the motor, and on a 
custom aluminum plate introduced into the belt itself to measure the tension directly. Using 
these measurements, it becomes possible to observe the effort of the motor under typical 
operating conditions and monitor how the systems changes when a fault is created in the 
system. This degree of observability allows the system to be characterized, and then the 
diagnostic performance of reduced observability can be assessed for different combinations 
of features are their relationships (by not using some measured data). 

2. THEORY 

This section presents the formulation of the governing equations for the laboratory-scale belt-
driven system of interest, and introduces some candidate machine learning techniques for 
anomaly detection.  

2.1 LUMPED-PARAMETER DYNAMIC MODEL FORMULATION FOR MOTOR 
AND BELT DRIVE 

A custom planar belt-drive system with one actuator was designed and developed, with the 
motor, structure, and idlers illustrated in Figure 1. The mechanism moves in the horizontal 
plane, loaded with a mass that is supported on a flat plate by an unactuated wheel. 



 
Figure 1: CAD Representation of Custom Belt-driven System (Belt Not Shown) 

The robot manipulator belt drive contains three pulleys. There is a pulley attached to the 
motor to transmit power to the system, an adjustable idler pulley that is used to manipulate 
the tension in the belt and a pulley attached to a larger arm link that rolls on a steel surface. 
Nomenclature for variables and parameters for the governing equations are listed in Table 1. 

Table 1: Nomenclature 
𝑟𝑟𝑚𝑚 Radius of the motor pulley 

𝑟𝑟𝑎𝑎 Radius of the arm pulley 

𝑟𝑟𝑖𝑖 Radius of the idler pulley 

𝑙𝑙1 Center to center length on belt side 1 

𝑙𝑙2 Center to center length on belt side 2 

𝑙𝑙3 Center to center length on belt side 3 

𝐽𝐽𝑚𝑚 Polar moment of inertia of motor pulley 

𝐼𝐼𝑖𝑖 Mass moment of inertia of the idler pulley 

𝐼𝐼𝑎𝑎 Mass moment of inertia of the arm link 

𝑑𝑑1 Effective damping coefficient of belt length 1 

𝑑𝑑2 Effective damping coefficient of belt length 2 

𝑑𝑑3 Effective damping coefficient of belt length 3 

𝑘𝑘1 Effective stiffness coefficient of belt length 1 

𝑘𝑘2 Effective stiffness coefficient of belt length 2 

𝑘𝑘3 Effective stiffness coefficient of belt length 3 

𝑇𝑇1 Tension in belt length 1 



𝑇𝑇2 Tension in belt length 2 

𝑇𝑇3 Tension in belt length 3 

𝐹𝐹𝐹𝐹 Coulomb friction force 

𝜏𝜏𝑚𝑚 Input torque from the motor 
 
It is assumed that there is stiffness and damping in the belt and each is a function of the belt 
length of each side. There are three degrees of freedom in this system, which are given by 𝜃𝜃𝑚𝑚 
𝜃𝜃𝑖𝑖 and 𝜃𝜃𝑎𝑎. The governing equation for the motor pulley depends on tension forces from the 
belt, which are functions of their stiffening and damping properties across their respective 
lengths, 
 

𝑇𝑇1 = 𝑘𝑘1(𝜃𝜃𝑖𝑖𝑟𝑟𝑖𝑖 − 𝜃𝜃𝑚𝑚𝑟𝑟𝑚𝑚) + 𝐷𝐷1(𝜃̇𝜃𝑖𝑖𝑟𝑟𝑖𝑖 − 𝜃̇𝜃𝑚𝑚𝑟𝑟𝑚𝑚)     (1) 
 

𝑇𝑇3 = 𝑘𝑘3(𝜃𝜃𝑚𝑚𝑟𝑟𝑚𝑚 − 𝜃𝜃𝑎𝑎𝑟𝑟𝑎𝑎) + 𝐷𝐷3(𝜃̇𝜃𝑚𝑚𝑟𝑟𝑚𝑚 − 𝜃̇𝜃𝑎𝑎𝑟𝑟𝑎𝑎)     (2) 
which yield the angular governing equation of motion: 

 

𝜃̈𝜃𝑚𝑚 𝐽𝐽𝑚𝑚 = 𝜃̇𝜃𝑖𝑖𝑑𝑑1𝑟𝑟𝑖𝑖𝑟𝑟𝑚𝑚 + 𝜃̇𝜃𝑎𝑎𝑑𝑑3𝑟𝑟𝑎𝑎𝑟𝑟𝑚𝑚 − 𝜃̇𝜃𝑚𝑚𝑟𝑟𝑚𝑚2(𝑑𝑑1 + 𝑑𝑑3) + 𝜃𝜃𝑖𝑖𝑘𝑘1𝑟𝑟𝑖𝑖𝑟𝑟𝑚𝑚 + 𝜃𝜃𝑎𝑎𝑘𝑘3𝑟𝑟𝑎𝑎𝑟𝑟𝑚𝑚 − 𝜃𝜃𝑚𝑚𝑟𝑟𝑚𝑚2(𝑘𝑘1 + 𝑘𝑘3) +  𝜏𝜏𝑚𝑚 −  𝐹𝐹𝑓𝑓1𝑟𝑟𝑚𝑚 (3) 
 

Similarly, the idler pulley, which is adjustable to tension the belt, has the following governing 
equation: 
 

𝜃̈𝜃𝑖𝑖  𝐼𝐼𝑖𝑖 = 𝜃̇𝜃𝑎𝑎𝑑𝑑2𝑟𝑟𝑎𝑎𝑟𝑟𝑖𝑖 + 𝜃̇𝜃𝑚𝑚𝑑𝑑1𝑟𝑟𝑚𝑚𝑟𝑟𝑖𝑖 − 𝜃̇𝜃𝑖𝑖𝑟𝑟𝑖𝑖2(𝑑𝑑2 + 𝑑𝑑1) + 𝜃̇𝜃𝑎𝑎𝑑𝑑2𝑟𝑟𝑎𝑎𝑟𝑟𝑖𝑖 + 𝜃𝜃𝑚𝑚𝑘𝑘1𝑟𝑟𝑚𝑚𝑟𝑟𝑖𝑖 − 𝜃𝜃𝑖𝑖  𝑟𝑟𝑖𝑖
2(𝑘𝑘2 + 𝑘𝑘1) −

 𝐹𝐹𝑓𝑓2𝑟𝑟𝑖𝑖    (4) 

and the arm pulley, which is rigidly connected to the inertial load, is described by 

𝜃̈𝜃𝑎𝑎 𝐼𝐼𝑎𝑎 = 𝜃̇𝜃𝑚𝑚𝑑𝑑3𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎 + 𝜃̇𝜃𝑖𝑖𝑑𝑑2𝑟𝑟𝑖𝑖𝑟𝑟𝑎𝑎 − 𝜃̇𝜃𝑎𝑎𝑟𝑟𝑎𝑎2(𝑑𝑑3 + 𝑑𝑑2) + 𝜃̇𝜃𝑚𝑚𝑑𝑑3𝑟𝑟𝑚𝑚𝑟𝑟𝑎𝑎 + 𝜃𝜃𝑖𝑖𝑘𝑘2𝑟𝑟𝑖𝑖𝑟𝑟𝑎𝑎 − 𝜃𝜃𝑎𝑎  𝑟𝑟𝑎𝑎
2(𝑘𝑘3 + 𝑘𝑘2) −  𝐹𝐹𝑓𝑓3𝑟𝑟𝑎𝑎  (5) 

The parameters for the analytical model are given in Table 2.  
 

Table 2: Analytical Model Parameters 

Parameter Value Units 
𝑟𝑟𝑚𝑚 0.0122 m 
𝑟𝑟𝑎𝑎 0.0122 m 
𝑟𝑟𝑖𝑖 0.0189 m 
𝑙𝑙1 0.127 m 
𝑙𝑙2 0.1524 m 
𝑙𝑙3 0.1778 m 
𝐽𝐽𝑚𝑚 2.048E-9 m4 

𝐼𝐼𝑖𝑖 2.445E-6 kg-m4 

𝐼𝐼𝑎𝑎 0.5472 kg-m4 
𝑑𝑑1 0.9460 kg/s 
𝑑𝑑2 1.135 kg/s 
𝑑𝑑3 1.324 kg/s 
𝑘𝑘1 3.376E+5 N/m 
𝑘𝑘2 4.051E+5 N/m 
𝑘𝑘3 4.726E+5 N/m 



The inertia parameters for the motor pulley and idler pulley were calculated directly using the 
approximation equations for polar and mass inertia of hollow cylinders. The calculation of 
inertia for the arm link was done using a 3D model in SolidWorks as seen in Figure 2. The 
mass moment of inertia was calculated about the center of mass and translated to the center of 
the pulley using the Parallel-axis Theorem. 
 

 
Figure 2: Arm and Driven Pulley with Support Idler 

 
The effective inertias of the system are summarized in Table 3. 
 

Table 3: Inertia Coefficients 

Inertia Parameter Value Units 
𝑱𝑱𝒎𝒎 2.048E-9 m4 
𝑰𝑰𝒊𝒊 2.445E-6 kg-m4 
𝑰𝑰𝒂𝒂 0.5472 kg-m4 

 
The stiffness of each segment of the belt is a function of its length. A segment of belt of 
nominal length 0.163 m was loaded in an MTS machine to determine the stiffness per unit 
length at room temperature. Two trials were run, and the MTS machine generated load-
displacement plots from which the average stiffness was calculated to be 43.3 kN/m. The 
stiffness was then scaled to determine the stiffness of the belts for each of the three lengths on 
the manipulator belt drive, as listed in Table 3. 
 

Table 4: Stiffness Coefficients 

 Length (m) Stiffness, k (kN/m) 
𝒍𝒍𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 0.163 43.3 
𝒍𝒍𝟏𝟏 0.127 33.8 
𝒍𝒍𝟐𝟐 0.153 40.5 
𝒍𝒍𝟑𝟑 0.178 47.3 

 
As with stiffness, the damping of the belt is a function of the length of each side. To 
determine the effects of damping in the belt, the 0.163 m specimen was half loaded in the 
MTS machine while the other side was attached to a small weight. The belt and weight were 
then lifted and released. The response of the belt for a typical trial is shown in Figure 3. 
 



 
Figure 3: Decaying Exponential Response of Belt with Hanging Mass 

By using the logarithmic decrement, the damping ratio ζ, can be calculated via: 
 

ζ = δ
2π

          (10) 
 

The critical damping coefficient can be calculated via: 
 

𝐶𝐶𝑐𝑐 = 2��𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒�      (11) 
 

Finally, the damping coefficient, d, is calculated as 
 

𝑑𝑑 = 𝜁𝜁 ∗ 𝐶𝐶𝑐𝑐     (12) 
 

As was done with the stiffness, the damping coefficient was scaled to the corresponding 
length of each side of the belt drive system. The results are given in in Table 5. 
 

Table 5: Damping Coefficients 

 Length (m) Damping, d (kg/s) 
𝒍𝒍𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 0.163 1.121 
𝒍𝒍𝟏𝟏 0.127 0.946 
𝒍𝒍𝟐𝟐 0.152 1.135 
𝒍𝒍𝟑𝟑 0.178 1.324 

The calibrated model can now be used to simulate dynamic behaviour from input of a non-
conservative generalized force (motor torque) as a function of time. Differences between the 
simulation results and the response of an actual system are due to changes in the system 
dynamics (which may be faults), unmodeled dynamics, error in the model due to calibration, 
error in the simulation solution (solver type, step size, or implementation), or noise.  

2.2 MACHINE LEARNING FOR PROGNOSTICS & HEALTH MANAGEMENT  
 
Machine learning is a set of data analytical techniques that allow for the extraction of 
information from data that can help to accelerate the development of data-driven methods 
required in a prognostics and health management (PHM) system comprising of anomaly 
detection, diagnosis and prognosis methods. In general, a machine learning program can be 
used to “learn” from a measurable experience so that when such an experience happens 
again, it is recognized. In mechanical system diagnostics, a system that learns to recognize 
measurements of both regular operating conditions and anomalous operating conditions – and 
be able to tell the difference between the two.  
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Machine learning techniques can typically be categorized as supervised (data are labeled) and 
non-supervised techniques (data are un-labeled) [5]. Within these branches, there are many 
methods that can be used in detecting anomalies in a dataset. These include statistical 
methods, proximity-based methods, and deviation (or classification-based) methods. 
 
Statistical methods assume that the data follows a specific distribution, and so the model can 
be created from a specified probability distribution [6]. By utilizing a probability distribution, 
anomalies can be detected by finding data that deviate dramatically from the distribution. 
Common statistical methods include Gaussian Mixture Models [7], various regression 
models, and Histogram-based Outlier Score models [8]. Some advantages and disadvantages 
are provided in Table 6. 

Table 6: Statistical Methods 

 
Proximity, or cluster-based, methods for detecting data anomalies assume that similar data 
points can be “clustered” together. The more a data point has a certain characteristic, the 
closer it would appear to a parameter called a “cluster centroid”. Therefore, anomalous data 
points can be determined by setting a threshold for its distance from a cluster centroid. These 
methods are typically categorized as unsupervised because they can be used to identify 
clusters of data points that are similar, without labels. Some commonly used cluster-based 
methods are k-means clustering [9] and self-organizing maps [10]. Some advantages and 
disadvantages of using proximity-based methods can be found in Table 7 below. 
 

Table 7: Proximity Methods 

 
 



Classification methods are used to classify test samples using a learned classifier by training 
on labeled datasets. The classifier learns by using the labeled training set which consists of 
labeled normal and anomalous operating conditions. It can then be tested on a second 
unlabeled dataset to determine the accuracy of the classifier in identifying normal and 
abnormal datapoints. Two commonly used classification methods are one-class support 
vector machines [11] and neural networks [12]. Some advantages and disadvantages of 
classification-based methods are given in Table 8.  

Table 8 

 

3. EXPERIMENT DESIGN 

 
An experimental system was developed to produce a cyclical motion in a simple belt-driven 
system corresponding to the analytical model described above. The system was designed for 
reproducibility so that multiple experiments could be run and have similar results. The 
apparatus is shown in the photograph in Figure 4. 
 

 
 

Figure 4: Side View of Arm Driven by Stepper through Belt Drive  

Figure 5 shows the belt tension measurement ligament with strain gauges. A prismatic 
rectangular piece of aluminum is connected to the belt. A full-bridge strain gauge circuit 
measures the instantaneous tension in the belt, which is recorded by a microcontroller. 
 



 
Figure 5: Belt Tension Measurement Sensor and Joint Sensor at Arm Base 

Figure 6 shows a top view of the apparatus, with a second joint sensor that measures the arm 
motion (in addition to the sensor collocated on the motor shaft). Both are US Digital E2 
optical encoders. A full-bridge strain gauge sensor measures torque on the motor shaft. A 
steel plate supports the 5.5 kg mass loading the aluminum idler at the end of the arm. 
Restraining clamps hold the base of the mechanism on a 3 tonne seismic platform. The drive 
train is fitted with an adjustable tensioning device mounted with an idler pulley, which allows 
the tension in the belt to be modified in different trials. The tensioner has four bolts that 
fasten it to the main body of the arm and the heights of the bolts can be changed to adjust the 
height of the idler pulley, increasing or decreasing the tension in the belt. 
 

 
Figure 6: Top View of Apparatus 

The system is controlled by a programmed Teensy 3.2 Microcontroller to actuate the motor 
and read the measurements from the instrumentation at a sampling rate of 100 Hz. The 
mechanism is actuated by a brushless stepper motor to drive the belt through a programmed 
range of motion (typically between 19 and 126 degrees). The motor is controlled by a 
Leadshine DM542 Microstep Drive. A switch on the arm is activated during the arm’s first 
cycle. The switch tells the microcontroller that it has reached the starting point, after which 
the motor begins a looping script to move the arm in an oscillatory path (5 seconds 
counterclockwise, stop for 0.1 s, 5 s clockwise, 0.1 stop, and repeat for a preset number of 
cycles). The robot arm transmits power from the motor to the arm link via a timing belt and 
pulley system. The pulley on the shaft connected to the motor and the pulley on the 
adjustable tensioner are both 5GT 16-tooth pulleys; and the pulley on the joint is a 5GT 24-
tooth pulley.  



4.  EXPERIMENTAL RESULTS 

A set of cycles were run to do baseline trials of normal operating condition at a belt tension of 
the belt of 150 N. The torque profile over multiple cycles is shown in the plot in Figure 7. 

 
Figure 7: Normal Operation Torque Profile at 150 N Belt Tension 

After a baseline torque profile was established, a variety of fault modes were individually 
tested on the system: 

• Loose Belt: Using the tensioner mechanism and the instrumentation on the belt, the 
belt was able to be precisely loosened. The loose belt fault mode was tested at 100 N 
and 120 N.  

• Tight Belt: Similarly, the belt was able to be tightened above the normal operating 
tightness. For this fault mode, the tension was set to 168 N. 

• Increased Friction/Sand Buildup: For this fault mode, sand was scattered along the 
steel plate that the pulley was running along. 

•  Extreme Temperature Change: For this fault mode, the ambient temperature 
around the manipulator arm was measured by a thermocouple. The temperature was 
increased to approximately 40 degrees Celsius from room temperature using a heat 
lamp. It was observed that the belt contracted, resulting in a tension increase from 150 
N to 168 N.  

The experimental conditions for these fault modes are summarized in Table 9. 
 

Table 9: Fault Modes and Number of Cycles per Trial 

 
 



Figure 8 on the following page shows the effects of these fault modes on the torque profile 
compared to the normal operating condition profile. It can be observed that while these are 
fault modes of the system, their impact affects the torque profile very subtly, meaning that 
they would be difficult to identify in a real-world system.  

 
FUTURE WORK 

 

Feature ranking and comparative assessment of a range of machine learning techniques are 
currently being analyzed. The anomaly detection and fault identification performance using 
machine learning methods will be compared with the goodness of fits for a set of physics-
based models (normal, loose belt, tight belt, high friction).   
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