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Abstract: An often overlooked set of services associated with Prognostics Heath
Monitoring and/or Management (PHM)/Integrated V ehicle Health Management (IVHM)
are those associated with Checkpoint and Restart (Save and Restore), which is necessary
to save and restore operational states. The design of a framework for a PHM system
includes consideration of services and support for resource management, such as the
following: (1) “What are the considerations for checkpoint/restart?” (2) “How often should
nodes be sampled?” (3) “What are the accuracy and precision requirements? (4) “What are
the prognostic distance and horizon requirements?” And (5) “How much noise filtering
and mitigation is needed to meet requirements?” The answers to these questions and others
are especialy important for a PHM system using condition-based data (CBD) to support
condition-based maintenance (CBM) solutions. In this paper we present concepts and
considerations to provide the reader with basic tools and knowledge as a basis to design
the framework of a PHM system.!
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Introduction: An often overlooked set of services associated with Prognostics Health
Monitoring (Management) are those associated with Checkpoint (Save) and Restart
(Restore). We often spend a great deal of time in the design and selection of approaches
and algorithms: examples include model-driven versus data-driven versus hybrid; physics
of failure and reliability modeling versus statistical modeling versus, and distributions,
acceleration factors, and likelihood ratio test (LRT), maximum likelihood estimation
(MLE) test, and mean square error (MSE) [1] [2].

We aso need to consider how to handle interrupted and resumed operation of subordinate
systems, assemblies, and components: (1) “what are the considerations for
checkpoint/restart?” Other considerations include, for example, the following: (2) “How
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often should nodes be sampled?” (3) “What are the accuracy and precision requirements?
(4) “What are the prognostic distance and horizon requirements?” And (5) “How much
noise filtering and mitigation is needed to meet requirements? The answers to these
guestions and others are especially important for aPHM system using condition-based data
(CBD) for condition-based maintenance (CBM) solutions. This paper uses a hypothetical
situation to illustrate checkpoint/restart and other considerations to design acomplex PHM
system [3].

Hypothetical Example: Y ou are asked to prognostic enable the solenoid to start a turbojet
engine; you are informed it has been determined the failure mode is a gradual increase in
coil resistance; and you are informed it is not permissible to make direct resistance or
impedance measurements — the starter solenoid cannot be removed unlessit is replaced.

The customer specifications for the prognostic system include the following: (1) failureis
defined to occur when the nominal resistance of the coil of the solenoid changes by 5%;
(2) failure must be detected at least 72 flight hours prior to failure; (3) prediction estimates
shall have a one-hour precision; and (4) the relative accuracy (o) requirements are (A)
within 25% at or before 75% remaining health, (B) within 10% at or before 50% remaining
health, and (C) within 5% at or before 25% remaining health.

Reliability Information: Y ou determine (after research, discussions and meetings) some
starter solenoids begin to degrade after as little as 200 flight hours, and by 1,000 flight
hoursall have begun to degrade. After onset of degradation: MTTF (Mean Timeto Failure)
i 1,200 hours, the smallest TTF is 400 hours, and the largest TTF is 2,700 hours — see the
SoH plots in Figure 1. After due consideration, you decide to use CBD to support
Condition-based Maintenance (CBM) for the PHM system because you believe reliability-
based modeling, usage-base modeling, and/or data-driven methods and approacheswill not
meet the accuracy and precision requirements of the customer.
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Figure 1. Example of TTF Values Relative to the Time of Onset of Degradation.

Design Approach: You choose to use the design approach shown in Figure 2, in which
the framework of the PHM system comprises the following: sensor, feature-vector,
prediction, and fault-management [4], which is not shown because you decide to defer that
part of the design.



Control and Data Flow: The approach leads you to design a generic PHM system having
adata- and control-flow architecture similar to that shown in Figure 3 (after [4]). Datais
collected by one or more sensors in a Sensor Framework from one or more monitored
nodes; the data comprises one or more leading indicators of failure from which Feature
Data (FD) such asvoltage, current, and temperatureis extracted and input to a Feature Data
Framework. Specialized processing such as data fusion, data transforms, and domain
transforms are used to produce a Degradation Progression Signature (DPS) and then a
Functional Failure Signature (FFS). Each data point in an FFS is passed to a Prediction
Framework to produce prognostic information in the form of estimates of State-of-Health
(SoH), Remaining Useful Life (RUL), and Prognostic Horizon (PH). Because of the
precision and accuracy specifications, you select a sampling rate of twice per hour.
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Figure 2: Diagram of an Approach to Designing a PHM Framework.

Prognostic Information: You present your high-level design to customer engineers and
you realize those engineers are expecting you to present them with a solution based on their
understanding of reliability: Reliability K(t) of a prognostic target is the probability that
the prognostic target will operate satisfactorily for arequired period of time, and reliability
isrelated to lifetime A and mean time between failures (MTBF) by the following [5]:

M =(ND/F Where N = number of test units, Q)
T =test time, and F = number of test failures

A=1/M Lifetime 2

K(t) = eCt) = /M) Reliability 3

Performance Metrics: Because your customer is aware of certain performance metrics as
defined by NASA [6], you need to explain your PHM system does not use reliability-based
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modeling; and your need to define and/or explain your prognostic terminology. In addition
to RUL and SoH, your terminology includes the following (see Table 1):

Prognostic Horizon (PH)
Relative Accuracy (a—A\) =(PH/TEOL)
RULo = Estimated TTF- Ta=RUL at Ta

= (RULa / PD)
Where Ts = time when datais sampled

Prognostic Efficiency (y)

= Estimated EOL = Ts + RUL

(4)
©)
(6)
(")

Ta = time when estimated EOL is within specified relative accuracy
PD = prognostic distance = PH when degradation isfirst detected
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Figure 3: Diagram of a Generic PHM System.

Table 1: Comparison of Terminology and Definitions
Term NASA Definition PHM System Definition
EOL End-of-Life, time of failure Same
Prognostic Horizon (PH) | EOL — time when RUL Ts+ RUL
estimates are within o accuracy
Error Margin (o) Percent Same

Relative Accuracy (a—A) | (a—A) = (estimated RUL) / (EOL

— time of data sample)

(0—1) = (PH/ TEOL)

Prognostic Distance (PD) | Not defined PD = EOL - time when
degradation first detected
Convergence Efficiency | Not defined ¥ = (RULa / PD)

()

When RUL within o, accuracy

Rationale for Terminology: The original performance

metrics are deficient in two

significant ways: initial estimate error and near EOL errors. At the onset of degradation, a
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PHM system must make an initial RUL estimate: in our example, a reasonable estimate
would be an RUL of 1,200 hours (mean TTF). For a solenoid failsin 400 or 2,700 hours,
thereisaninitial estimate error: an underestimation error of 67% and an overestimation of
error of 125%. The NASA-defined relative accuracy results in near EOL errors when
estimates occur within a few sampling periods of failure as shown in Figure 4, which is
explained as follows: “it may be prudent to evaluate PH on an error band that islimited in
extent on the time x-axis by the time instant teour, which denotes the End-of-Useful-
Predictions (EOUP), ... these predictions are of little or no use practically.” [6]
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Figure 4: Example of Accuracy Error Near EOL (from [6]).

It is preferable to use arelative accuracy definition that is meaningful, is correct, and does
not exhibit such “anomalous” behavior.

Examples of Data and Metrics: To simplify processing, data amplitudes should be
normalized by dividing by a nomina value (DnorvaLizep = Dmeasuren/DnominaL) 8S
exemplified by Figure 5. Data should aso be made relative to the time when degradation
is detected (see Figure 6). The plots in Figure 7 are for ideal PH, ideal RUL, ideal SoH,
and ideal PH accuracy; the plots in Figure 8 are examples of initial-estimate errors; and
Figure 9 shows examples of non-ideality in FFS transfer curves: signal conditioning such
as noise filtering and mitigation is necessary to sufficiently reduce non-ideality. [7]
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Figure 5: Example of Normalized and Transformed CBD.
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Figure 7: Examples of Ideal Prognostic Information — PH, RUL, SoH, and PH Accuracy.
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Figure 8: Example of Initia-Estimate Errors and Convergence

FSS Non-ideality: Anideal FSS, straight line, is not achievable in practice due primarily
two causes: (1) achangeinthefailure mode and (2) distortion dueto noise which isdefined
as any variability in CBD not caused by degradation. The first could be addressed by
employing a multi-function DPS transform — but experimentation reveals such complexity
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is not needed. The latter is addressed by employing sufficient noise and distortion filtering
and mitigation: see Figure 9. [7]
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Figure 9: Examples of Non-ideality in FFS Transfer Curves

Experimental FADEC Test Data: You are provided with simulated measurement data
obtained from a test bed for a Full Authority Digital Engine Controller (FADEC): see
Figure 10. The PHM system performs data conditioning, data fusion, and data transforms
with results as shown in Figure 11 and Figure 12 (A).[7]
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Figure 10: Starter Solenoid Measurements - Temperature, Voltage, and Current.

Prognostic Information — Results: The FFS datais input to your Prognostic Framework
with results shown in Figure 12 (B) and (C). The performance is evaluated as “far exceeds
requirements” as follows:



e Prognostic Horizon: within 25% at SOH = 99.5%
e Prognostic Horizon: within 10% at SOH = 98.8%
e Prognostic Horizon: < 5% at SOH = 79.4%
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Figure 11: Test Data After Fusing (A) and Transforming (B)

Alpha Test — Revised PHM System: The PHM system is apha tested and fails because
the customer powered off your PHM system between simulated flights: no provisionswere
made for Check Point/Restart of the system. A redesigned PHM system is necessary: see
in Figure 13.
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Figure 12: FFS (A); RUL, SOH, and PH (B); and PH Accuracy (C).

Conclusion: This paper used a simple example for a PHM system to present concepts and
considerations associated with Prognostics Health Monitoring and/or Management (PHM).
Considerations included sampling rate; prognostic information and performance metrics
suchasRUL, SoH, PH, PD, (a—A), and y; data conditioning, including noise and distortion,
fusion, and transforming; and Checkpoint/Restart services. [7]
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Figure 13: Revised PHM System with Save/Restore (Checkpoint/Restart).
References:

[1] M. Pecht; Prognostics and Health Management of Electronics, ISBN 978-0-470-
27802-4. Hoboken, New Jersey: John Wiley & Sons, Inc., 2008.

[2] S. Kumar and M. Pecht, “Modeling Approaches for Prognostics and Health
Management of Electronics,” International Journal of Performability
Engineering, Vol. 6, No. 5, pp. 467-476, Sep. 2010.

[3] James Hofmeister, Robert Wagoner, and Douglas Goodman,” Prognostic Health
Management (PHM) of Electrical Systems using Conditioned-based Data for
Anomaly and Prognostic Reasoning,” Chemical Engineering Transactions, Vol.
33, pp. 992-996, 2013.

[4] Prognostics Health Management for Electronics. (Accessed 2015, Nov.) Auburn
University, Auburn, Alabama. [Onling]. Available:
http://cave.auburn.edu/rsrch-thrusts/prognosti c-heal th-management-for-
electronics.html.

[5] S. Speaks. (Accessed 2005, Aug.). Reliability and MTBF Overview. VICORP.
Andover, MD. [Onling]. Available:
www.vicorpower.com/documents/quality/Rel_ MTBE.pdf.

[6] A. Saxena, J. Celaya, B. Saha, S. Saha, and K. Goebel, “On Applying the
Prognostic performance Metrics,” Annual Conference of the Prognostics and
Health Management Society (PHMO09), CA, 2009.

[7] James Hofmeister, Douglas Goodman, and Robert Wagoner, “Advanced
Anomaly Detection Method for Condition Monitoring of Complex Equipment
and Systems,” 2016 Machine Failure Prevention Technology, Dayton, OH, 24-26
May 2016.




