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Abstract: Machine learning and statistical algorithms are receiving considerable attention
during the past decade in prognostics and health management (PHM). However, there is a
lack of consensus and methodology on algorithm selection in different scenarios, which
renders the random implementation of machine learning algorithms and inefficient
development processes. PHM Data Challenge, an open data competition specialized in
PHM, includes diverse issues in industrial data analytics and thus provides abundant
resource for study and appropriate approach development. In this work, we first summarize
the problems and datasets of PHM Data Challenge competitions. According to their
objectives, the 9 problems can be classified into 3 categories, health assessment, fault
classification and remaining useful life prediction. Second, common issues and unique
challenges have been clearly pointed out for each problem and each category. Then, we
analyze all solutions regarding what type of strategy a particular solution took, what
algorithms it used and how it overcame the challenges. At last, insights in PHM solution
strategies have been summarized to conclude the paper.
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1. Introduction: Prognostics and Health Management (PHM) is an interdisciplinary
research area that aims at increasing productivity by managing operations based on
assessment and prognosis of potential engineering system faults. The advancement of
Industrial Internet of Things [1] and industrial big data analytics [2] has spurred huge
promise of economic values through data-driven predictive modeling [3, 4] in a variety of
industries. Due to its scalability, flexibility, and rapidity of deployment, data-driven PHM
has clearly become a necessity for the next industrial revolution.

The PHM Society has been promoting research at the frontier of PHM by organizing the
PHM Data Challenge competition nearly every year since 2008 [5]. The data in the
competitions cover a wide spectrum of real-world industrial problems, from rotary
machinery fault diagnosis [6] to jet engine remaining useful life prediction [7], and from
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time series based fault detection [8] to event-based failure prediction [9]. The proposed
issues and winning algorithms each year serve as a diverse library of case studies from
which we can learn about the current challenges in practice, the thinking flow of addressing
these challenges, and the advantages and disadvantages of different methods.

This paper attempts to find the commonalities and insights of applying machine learning
algorithms for PHM solutions based on the insights learned from the competitions. The
resulting conclusions will serve as the foundation for the development of a systematic
methodology in data-driven modeling and contributing to the advancement of the PHM
research.

1.1. Review of Related Literature: With the rapid advancement in prognostics, quite a
few research efforts provide a survey for remaining useful life (RUL) prediction as one of
the most important tasks in prognostics. In [10], the author categorized the algorithms into
physics-based methods, experienced-based methods and data-driven methods. In the data-
driven section, four typical types of machine learning algorithms, including neural
network, support vector machine, Bayesian network and hidden Markov model, were
reviewed while other feature extraction techniques combined with statistical and machine
learning algorithms were considered as hybrid methods. In [11], the author reviewed the
data-driven methods and summarized them into two types based on whether it is possible
to identify an indicator from the original raw data, direct condition monitoring approach
and indirect condition monitoring data approach. Regression-based, Wiener process,
Gamma process and Markovian-based methods can be used when an indicator is identified;
stochastic filtering and covariate based hazard model and hidden Markov model are
applicable if an indicator cannot be identified. The paper [12] reviewed the algorithms in
both diagnosis and prognosis. It is noted that the author discussed prognostics based on
different tasks. Other than that, it also reviewed the commonly used techniques in other
steps during implementation, including data acquisition, preprocessing, feature extraction
and selection and a special case when inconsistent types of data need to be processed. A
systematic methodology on PHM design for rotary machine systems with a comprehensive
review of algorithms was proposed in [13]. Although this paper proposed an algorithm
selection method according to customer requirements and application conditions by quality
function deployment (QFD) tables, its performance is largely limited by prior knowledge
and subjective judgment. As we see from the above existing PHM reviews, most papers
focus on discussing algorithms in terms of capability and functionality, but they rarely
consider the application of these algorithms in real industrial situations. Hence this review
paper will try to discuss the methods and algorithms in an application and problem-oriented
fashion.

1.2. Motivation: In the past 9 years, several key issues that reflect the challenges in
industrial data analytics in different industrial sectors have been generalized and released
as PHM Data Challenge competitions organized by PHM Society and IEEE Reliability
Society (in 2012 and 2014). The purpose of PHM Data Challenge is to gain more attention
and efforts from academics and industry to address the real-world challenges. The topics
of the competitions covers a wide range of areas, including aircraft engine, fuel cells, and
gearbox. The topics also cover almost all the PHM tasks, which include remaining useful
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life (RUL) prediction, diagnosis, fault detection, health assessment, and condition
monitoring. The competitions provide abundant open resource for study and research such
that further improvement and extended research can be advanced. Many research works
have been published based on popular datasets provided by PHM Data Challenge
competitions, such as jet engine RUL prediction in 2008 [14] and gearbox diagnosis in
2009 [15, 16]. Therefore, reviewing how algorithms have been used and methods have
been developed based on PHM Data Challenge datasets will surely benefit and facilitate
the data-driven PHM methodology development in the future.

1.3. Objective: This study aims at providing a generalized problem-oriented PHM
technique review by summarizing 9 PHM Data Challenge competitions and around thirty
papers published as the winning solutions to these competitions.

The basic ideas of this review consist of three steps: 1) summarize the common issues and
analytical challenges from the data competitions; 2) compare and benchmark the relevant
solutions; 3) discuss the lessons learned from these competitions and solutions. By
following these steps, the objective is to understand the reason why the winning algorithm
outperforms others and learn the rational strategy of algorithm selection in different
scenarios.

1.4. Organization: Section 2 gives an overview of Data Challenge competition, and
introduces the basic information about each year’s problem. Then the details of three
categories of problems, health assessment, fault detection and classification and RUL
prediction, are analyzed individually in Section 3, Section 4 and Section 5, respectively.
Section 6 concludes the findings in each type of problem and other common issues over all
data challenge problems.

2. Overview: In general, an effective PHM system is expected to have the capabilities of
providing early detection and isolation of incipient faults and monitoring and predicting
the progression of faults, which will further support maintenance scheduling and asset
management. Such expectation is a mixed requirement of diagnostics, prognostics, health
assessment and health management. Conventional diagnostics is known as a fail-and-fix
process to determine the root cause of machine failure. On the contrary, prognostics is a
predict-and-prevent methodology aiming to reduce downtime and maintenance cost
proactively. Health assessment is mostly regarded as a critical process for detecting
incipient failures before an algorithm-centered prediction process. The last step in a
complete PHM system is maintenance scheduling and operation management based on
outputs from prognostic modeling process. It focuses on assessing the further impact of
failures and minimizing the loss through optimization.

In PHM Data Challenge competitions, a variety of topics mentioned above in the general
PHM scope are covered. For the convenience of discussing different competitions, we
shorten the name of each year’s PHM Data Challenge competition as the following format:
“ORGANIZATION’YR” to represent the competition organizer and year. For example,
“PHM’08” represents the competition held by PHM Society in 2008; “IEEE’12” represents
the competition held by IEEE Reliability Society in 2012. We summarize the tasks in the
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general PHM framework as shown in Figure 1. Three competition problems involve more
than one PHM tasks. In PHM’11, a sensor health monitoring problem, given two types of
dataset with different number of sensors included, it requires the detection of faulty
condition for shear data and identification of all the possible combinations of multiple
faulty anemometer for pair data, which are considered as health assessment and
diagnostics, respectively. IEEE’14 splits the competition into two tasks: RUL Prediction
and State of Health (SoH) estimation, which involves all three tasks. PHM’15 requires
prediction of the failure mode, failure start time and failure end time, which is a combined
task of prognostics and diagnostics, while other prognostics problem only consider the
RUL prediction without the identification of failure modes.

Figure 1: Tasks of PHM Data Challenge Competition Problems.

2.1. Basic Information of PHM Data Challenge Competitions: Since the tasks of
competitions are sometimes multi-objective, we categorize all the competitions into three
types according to the common objectives in PHM, namely, health assessment, fault
classification and RUL prediction. Table 1 summarizes the basic information of PHM Data
Challenge competitions and their datasets. The observations from this table are: 1) most
time prediction tasks consider multi-asset and multi-regime issue without multiple failure
modes, since the run-to-failure data provided is sufficient to represent the failure mode; 2)
fault classification tasks focus more on the multi-failure mode issue than multi-asset and
multi-regime scenarios; 3) health assessment tasks seem to focus less on regime complexity
in the competitions.

3. Health Assessment: Health assessment task in the context of PHM Data Challenge
competition can be defined as health condition estimation for a device or system at the time
requested. Regarding its applications, health assessment can be applied either
independently to real-time condition monitoring or to detecting the degradation trend with
RUL prediction tasks as a pre-modeling step, as illustrated in Figure 1. Details of three
health assessment problems have been listed in Table 2.

Table 1: Basic Information of PHM Data Challenge Competitions and Datasets

Diagnostics

Health
Assessment Prognostics

PHM’08
PHM’10
IEEE’12

PHM’11

IEEE’14

PHM’15

PHM’09
PHM’13

PHM’14
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Task Objective Organization
& Year

Application Asset Failure Regime Data Source Data Type Variable Type

Health
Assessment

NP PHM 2011 Anemometer NA 4 D Monitoring Short Parameter
PHM 2014 Unspecified

Equipment
Fleet 14 NA Maintenance

& Usage
Long Event &

Parameter
P IEEE 2014 Fuel Cell 2 NA S&D Testbed Short Parameter

Fault
Classification

NP PHM 2009 Gearbox NA 14 10 Testbed Short Waveform
PHM 2013 Unspecified

Equipment
NA 13 NA Monitoring Long Event &

Parameter
P PHM 2015 Plant

Operation
Fleet 6 NA Monitoring &

Control
Long Parameter

Remaining
Useful Life
Prediction

PHM 2008 Aircraft
Engine

Fleet NA 6 Simulation RTF Parameter

PHM 2010 Milling
Machine

6 NA 1 Monitoring &
Usage

RTF Waveform

IEEE 2012 Bearing 17 NA 3 Testbed RTF Waveform
IEEE 2014 Fuel Cell 2 NA S&D Testbed RTF Parameter

Notation:
P/NP – Prediction of failure time is required or not required.
NA – The criteria is neither clearly specified nor significant to problem.
Fleet – A large number of assets are considered.
S/D – Static or Dynamic regime is considered, respectively.
RTF – Run-to-Failure data is provided
Short/Long – Relatively short term or long term data is provided.

Table 2: Overview of Health Assessment Problems and Datasets.

PHM’11 PHM’14 IEEE’14
Equipment Anemometer Unknown Fuel Cell
Data Type Monitoring Maintenance Log &

Usage
Testbed
(Run-to-Failure)

Asset
(train-test)

NA 1913-2076 1-1

Regime Dynamic NA Static – Dynamic
Failure
Mode

NA 14 1

Sampling
Interval

Every 10min Event Aging: Every 30s
EIS, Polarization:
Weekly

Variables Single Value Single Value Single Value
Variables Pair: 16

Shear: 20 or 24
Part Consumption: 5
Usage: 3

Aging: 25
Polarization: 8
EIS: 3

Note that PHM’11 only provide a series of sample data without knowing whether
they come from the same group of sensors or various assets: For pair data, 12 25-
day length samples for training; 420 5-day length samples for testing. For shear
data, 7 25-day length samples for training; 255 5-day length sample for testing

Three levels of health assessment can be classified in PHM Data Challenge competitions
due to their different levels of requirement: 1) abnormal detection using a feature-based
indicator, which represents a base level binary health condition assessment. For example,
PHM’11 only differentiates normal/abnormal or healthy/unhealthy conditions; 2)
quantitative estimation of health condition using a self-defined health index, such as the
failure rate of system defined different from method to method in PHM’14; 3) quantitative
estimation of health condition using a special indicator, such as the diagnostic tool of
electrochemical impedance spectroscopy (EIS) test being used in fuel cell (FC) SoH
estimation of IEEE’14.
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3.1. Challenges: Health condition always changes randomly with noise. Although the
randomness or other contribution from invisible factor exists, part of the unstable behaviors
can be theoretically explained or physically understood. Challenges of each health
assessment problem are summarized in Table 3. In PHM’11, slow running situations are
not caused by mechanical issues but temporary weather conditions, such as icing. Since
they are not permanent degradation and recoverable, such cases should not be considered
as true failure, and need to be filtered out during the modelling process. In PHM’14, two
major changing modes of failure rate have been discovered according to the preventive
maintenance policy in which the failure rate follows a bathtub curve, a case of Weibull
distribution [17]. Failure rate decreases after preventive maintenance (PM) determined
when a large number of parts are replaced and dramatically increases for a short period of
time known as infant mortality after corrective maintenance (CM) determined when a few
parts are replaced [18]. Both winning methods published this year built their models upon
similar maintenance policies. In IEEE’14, a self-healing effect on FC power has been found
with a local reversible degradation behavior after weekly performance or characteristic test.
Therefore, how to understand and explain such phenomenon becomes a common issue for
health assessment. In order to address these issues, finding suitable algorithms with deep
domain knowledge is critical to develop an effective PHM solution no matter what
strategies being chosen. Thoroughly understanding the background, relevant theories,
underlying mechanism of the problem may help handling the uncertainty and facilitate
method development.

Table 3: Summary of Challenges of Health Assessment Problems

PHM’11 PHM’14 IEEE’14
Common Issues  Find health indicator

 Health condition degrades with uncertainty
 Call for domain knowledge

Unique Challenges  Icing
 Pattern recognition

 Implementation of
maintenance policy

 IES Estimation
 Little Reference

3.2. Solutions: In the competitions, the strategies took in solutions are so diverse that we
cannot directly compare the solutions. Each of them represents one type of health
assessment problem. Fortunately, since each solution create a health index in modeling, we
discuss the solutions by following what health index was chosen and what algorithm was
used.

PHM’11 – Binary Abnormal Detection Using a Feature-Based Indicator: Three
solutions for this competition are compared. Before pattern classification, Siegel [19] and
Sun [20]’s methods uses wind speed difference as health indicator and both applies power
law equation and unify the data from different heights, whereas Cassity [21]’s method uses
percentage difference of wind speed as health indicator and applies same wind profile
theory to create wind profile models and fit in each height level. The champion solution
proposed by Siegel applies an advanced algorithm Auto-Associative Neural Network
(AANN) further process the health indicator for shear data other than Sum of Squared
Residual (SSR) and R2 value used by Sun and Cassity, respectively. In all three methods,
the icing issue which would potentially cause false alarm is addressed by eliminating
outliers. For pattern classification part, the health indicators are used as critical features
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and inputs of pattern recognition models. Siegel’s k-mean clustering based figure of merit
(FOM) method is able to partition the dataset with a bias on the samples containing lagging
anemometers. Sun conducted a Euclidean similarity measurement based pattern search
with a hybrid decision making method which has a close performance to the 1st place.
Cassity’s technique performs not as well as other two top methods do. This is probably
because of the additional step it takes for initial guessing some bad sensors, as an essential
step of generating labeled bad/faulty data samples for discriminant analysis which is a
supervised learning method. Due to the dynamic working regime and multiple possible
failure mode which is not clear to the participants in this competition, such process of using
initial guess as an untrusted baseline data to detect other faulty sensors would be more
likely to generate a larger error. The expertise knowledge involved in solution procedure
is also summarized in the last column.

PHM’14 – Quantitative Estimation of Health Condition Using a Self-Defined Health
Index: Similar to PHM’11, the dataset of PHM’14 also has two parts, maintenance log
based part consumption data and usage measurement data. In both solutions, a deep
expertise on maintenance policy has been adopted firstly, especially when defining and
detecting Predictive Maintenance (PM) or Scheduled Maintenance (SM), and Corrective
maintenance (CM). In spite of other statistical analysis, histogram chart is seen as the most
frequently used statistical tool due to its capability of accumulating discrete data samples
as frequency information that can be further converted as risk indicator. The champion’s
solution proposed by Rezvani [18] is quite complicated in statistic based analysis, in which
two high risk time interval detection models have been individually developed for PM and
CM based on Weibull Bathtub curve by only using the part consumption dataset, then used
to test each asset sequentially at the requested times to determine its risk level. Instead of
calculating high risk time interval sample by sample, the 2nd placed solution [22] created a
high/low risk histogram-based spectrum for any type of failure mode (reason code) in time
domain and in usage domain as well during the training stage, then simply test each sample
whether it located in the high/low risk bins by a consensus ensemble strategy. Furthermore,
unlike the champion method, this method utilizes the usage dataset revealing a linear
relation of failure rate with accumulated usage, also makes a further inference from reason
code to part number instead of summarizing parts information in repeated number of part
numbers replaced (RNPNR). Despite of some of these part number being found to be
uniquely associated to SM and CM, respectively, this solution treated them in one strategy
with no difference instead of using separate strategies for PM and CM in champion’s
method. Overall, these two solutions are similar in methodology, technically compensate
with each other and can be possibly fused into one more effective method.

PHM’15 - Quantitative Estimation of Health Condition Using a Special Indicator: As
shown in the literature review in both papers, we see that the majority of research on FC
or battery focuses on the prognostics and diagnosis, but less effort on EIS estimation which
is related to the dynamic performance of FC. Basic background knowledge on FC and some
expertise on EIS would be essential to solve this problem effectively. The champion of this
task [23] developed a solution targeting to each issues mentioned above. The solution
merged the power degradation information with Equivalent Circuit Model (ECM) for EIS
estimation by considering an exponential local reversible degradation model for the
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degradation uncertainty issue. This requires a deep understanding of physical system of FC
stacks. In the 2nd placed solution [24], not too much expertise was used in modeling
process. Several different regression methods are applied to fit the real part and imaginary
part independently, though much more background and domain knowledge is mentioned
at the beginning. This method is very straightforward and only considered the EIS data
without any degradation process. Data with current information and polarization curve
hasn’t been used in both solutions, but may lead to better results. Another solution
published to RUL prediction of FC, anther split task of this competition using the same
dataset, will be discussed later in Section 5.2.

4. Fault Classification: Finding root cause of machine failure is generally considered as
the major task of diagnostics. In the content of PHM Data Challenge competition, the task
of root cause finding is mostly expressed as fault classification problem that is required to
determine a certain sample’s fault type from a series of possible failure modes. Details of
three fault classification problems have been summarized in Table 4.

Table 4: Overview of Fault Detection Problems and Datasets

PHM’09 PHM’13 PHM’15
Equipment Gearbox Unknown Plant
Data Type Short-time

Testbed
Maintenance
Log &
Monitoring

Monitoring

Asset
(train-test)

NA 1 33-15

Regime 10 NA Multiple
Failure
Mode

14 13 6

Sampling
Interval

Test Event Every 15min

Variables Waveform Single value Single Value
Variables 3 2, 2 Monitoring: 14

Fault Event: 3

Two classification strategies can be grouped according to the data type that needs to be
processed:

1) Feature-based pattern classification, in which the performance of the algorithm highly
depends on the quality of features extracted from the dataset, e.g. PHM’09 and PHM’15
give a no training data situation and a no background situation for classification task,
respectively, thus the former requires a powerful feature extraction methods, and the latter
requires thorough data exploration process. In both situations, deep expert knowledge
would be necessary.

2) Event-based inference and classification, in which major effort would be taken in
revealing the complex relationship among multiple character type variables so as to classify
the data samples, e.g. PHM’13 asks participants to develop a maintenance action
recommender which is capable of infer the problem ID based on event type data generated
from the onboard condition monitoring system.
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4.1. Challenges: Despite of the types of classification technique, the challenges that each
problem faces are different, mainly due to their diverse backgrounds. Challenges of each
health assessment problem are summarized in Table 5. For PHM’09, because of no training
data (labeled data) provided, we would only be able to mine useful information or extract
features from unlabeled data, which further implies the necessity of developing more
powerful methods with more expertise in signal processing for vibration data and gearbox
domain knowledge. For PHM’13, three character type variables, “event”, “case” and
“problem type”, formalizes a complex triangular relationship in which each two of them
are somehow related. In addition, once each event occurs, 30 numerical parameters would
be generated by device, as a snapshot of system condition. Hence the unique challenges in
this competition are 1) how to reveal the triangular relationship and 2) how to appropriately
combine the two sources of data and systematically use them. For PHM’15, a task
consisting of both fault classification and failure time prediction, the first challenge would
be determine a strategy to deal with such multi-objective task. Besides, finding high quality
features without given details about the physical system is another challenge.

Table 5: Summary of Challenges of Fault Classification Problems

PHM’09 PHM’13 PHM’15
Common Issues  Find health indicator

 Health condition degrades with uncertainty
 Call for domain knowledge

Unique Challenges  No training data
 Signal processing

 Complex Relationship
among “event”, “case”
and “problem type”

 Data Fusion

 Fault classification and
time prediction

 Feature extraction
without knowing the
mechanism of system

4.2. Solutions: The solutions to fault classification problems are discussed by following
the two types of strategies mentioned above. PHM’09 and PHM’14 belong to feature based
pattern classification problem. PHM’13 belongs to event based inference and classification
problems.

For PHM’09, fault classification without training data, the champion Wu proposes a
compact and integral solution which works in a sequential process with the best
performance in this competition [25]. The idea of using many bandpass filters to
decompose the whole frequency spectrum to achieve the global frequency analysis as well
as local analysis of frequency component of interest simultaneously requires a deep insight
of vibration signal processing skills. Al-Atat’s solution is relatively complicated and
module-based, but follows a more general diagnosis approach [26]. It consists of many
sub-methods regarding to regime segmentation, health assessment and fault classification.
These sub-methods are highly independent with each other, and thus have more flexibility
being used in other applications. In this competition, all methods are used with prior
expertise or for exploring the hidden relations.

For PHM’15, fault classification with downtime prediction, in order to address this multi-
objective task, both two top ranked solutions take the same strategy that machine learning
based fault classifiers are built in each time interval for each plant, and features are
extracted based on the comprehensive data exploration. In champion’s solution [27],
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several algorithms are used for correlation analysis for variables and components, and
periodicity of failure time is also found. For 2nd place [28], features are extracted based on
inference from physical interpretation, basically guessing the possible physical meaning of
each correlated sensors, seasonality analysis, health condition detection by a visualization
tool named empirical Probability Density Function (PDF), and a “one hour” rule being
discovered by time series analysis. Both of the above two methods performs very close to
each other, with score of 21015.55, 20639.71, respectively, nearly double as the 3rd place
solution [29], 10221.54. The 3rd place solution also uses ensemble technique to combine
Random Forest (FR) and Gradient Boosting Decision Tree (GBDT) to form a decision tree
based classifier. Besides, the 3rd place solution focused on an issue of fault event
overlapping. It is observed that building a multiclass classifier in each time step seems a
good strategy for multi-objective task of fault classification and prediction, and preparing
high quality features which requires thorough exploration is critical to the performance of
a method.

Table 6 Summary of Solutions to Event Based Inference and Classification Problems

PHM’13 ScoreDataset Used Basic Strategy Algorithms
1st - Das 86 Event data Matrix decomposition ALS-NMF
2nd - Katsouros60 Event data Bayesian Classification Naïve Bayesian Classifier
3rd - Kimotho
Method 1

51 Event data and
parametric data

Classification for event Event-based DT + Ensemble of classifiers of BT, RF and
SVM

3rd - Kimotho
Method 2

48 Event data and
parametric data

Classification for event Event-based DT + SVM

2nd - Katsouros
Method 2

35 Parametric data Classification SVM with radial based kernel

6th - Siegel
Method 1

35 Event data and
parametric data

Regression for problem Event based random forest

6th - Siegel
Method 2

30 Parametric data Regression for problem Random forest

For PHM’13, a typical fault classification problem with a dataset mixed with event data
and parametric data, a benchmark of solutions to this event based inference and
classification problem has been illustrated in Table 6. Parametric data is an extra dataset
with 30 parameters generated by control system when a specific condition corresponding
to an event code in event data is met onboard. Based on the papers and presentation slides
[9] published by PHM Society, 7 solutions have been benchmarked and ranked according
to their scores shown in Table 6. High performance (score>60): Both of the top two
methods in this range only use event data and take their main efforts in relationship
inference. The champion Das [30] introduces a collaborative filtering based method
typically used for 'Recommender System' development in Information Technology (IT)
field, e.g. e-commerce item recommendation [31]. The 2nd placed Bayesian classifier
proposed by Katsouros [32] has much lower accuracy than the 1st placed Non-Negative
Matrix Factorization (NMF) methods, but it has a straightforward inference with a big
advantage in its simple structure and computationally effectiveness. Medium performance
(60>score>40): The two second level methods are all based on classification for each event.
Solutions in this range are generated by the 3rd place participant Kimotho, using both event
data and parametric data to classify different event codes. Low performance (score<40):
Other three methods given by Katsouros and Siegel either choose regression instead of
classification or completely ignore the event data. Therefore we may conclude that
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parametric data may not be very useful as the Event ID/Code itself summaries the
parameters settings for a specific condition [30]. Beyond the performance, due to the time
constraint of competition, most participants in PHM’13 follows a trail-and-error strategy
and gives more than one solutions to the problem, however the champion who gains more
scores than others seizes the essence of the problem and introduces a highly effective
method from the IT field.

5. Remaining Useful Life Prediction: RUL prediction tasks occupy nearly half of all
PHM Data Challenge competitions, because of its significance of assisting maintenance
scheduling and health management. It is very common to see the health assessment works
as a critical step to support RUL prediction in real applications. In competitions, the
objective of RUL prediction is to estimate the remaining working time of a system before
its health condition deteriorates below a threshold indicating a faulty condition. In
competitions, RUL prediction doesn’t explicitly require to describe the health condition
during degradation as long as the solution accurately estimates the time before actual
failure, which make it literally differentiable from health assessment tasks in this
competition. Details of four RUL prediction problems have been summarized in Table 7.

Table 7: Overview of RUL Prediction Problems and Datasets

PHM’08 PHM’10 IEEE’12 IEEE’14
Equipment Engine Milling Cutter Bearing Fuel Cell
Data Simulation

(Run-to-Failure)
Monitoring &
Usage
(Run-to-Failure)

Testbed
(Run-to-Failure)

Testbed
(Run-to-Failure)

Asset
(train-test)

218-218 3-3 6-11 1-1

Regime 6 1 3 2(Static-
Dynamic)

Failure
Mode

NA NA NA NA

Sampling
Interval

Operation Cycle
- Flight

Operation Cycle
- Cut

Every 10s Every 30s

Variables Single Value Single Value Waveform Single Value
Variables 30 8 3 25

5.1. Challenges: As shown in Table 8, the common challenges of RUL prediction is
finding an appropriate degradation trend which can be identified as an indicator for
modeling process. However, in different systems and situations, degradation detection
would meet different challenges related to number of assets and number of regimes.
PHM’08 aircraft engine dataset shows a clear degradation trend with multiple regimes and
a large number of units. PHM’10 milling cutter machine dataset also shows a clear
degradation trend but with few units available to analysis, which causes data scarcity issue.
PHM’12 bearing dataset shows a very unclear end-of-life degradation signature without an
ideal gradually monotonic degradation trend. We also notice the difficulty of dealing with
bear’s uncertain behavior which is caused by its unbalanced dataset and multiple regimes.
PHM’14 fuel cell dataset has a unique training/testing mode that training data in static
regime is used as reference to estimate the test sample’s RUL in dynamic regime and a
special degradation mode, self-healing effect or local reversible degradation, caused by its
electrochemical features.



12

Table 8: Summary of Challenges of Remaining Useful Life Prediction Problems

PHM’08 PHM’10 PHM’12 IEEE’14
Common Issues  Degradation trend detection
Unique
Challenges

 A fleet of asset
 Multiple regimes

 Data scarcity  Unclear end-of-life
signature

 Unbalanced dataset

 Static/dynamic
regime

 Reversible
degradation

5.2. Solutions: A comprehensive review [14] on the papers using the C-MAPSS dataset in
which PHM’08 competition dataset is included has been published. In that review, the
solutions of 2nd place [33] and 3rd place [34] are classified as “Category 1 - using functional
mappings between set of inputs and RUL”, and champion’s solution [35] are classified as
“Category 2 - functional mapping between health index and RUL” as well as “Category 3
- similarity-based matching”. Our review of methods provided in all competitions related
to RUL prediction is basically conducted in a similar way. Over all solutions to RUL
prediction problems, two strategies have been observed so far for data-driven RUL
prediction methods: 1) finding a degradation indicator and predicting the trend until a
threshold; 2) direct mapping from extracted features to RUL index. Since we follow a
problem-centered manor of review, the solutions are discussed with their unique
difficulties.

In PHM’08, RUL prediction with a fleet of assets and multiple regimes, the champion’s
solution proposed by Wang [35] takes the first strategy and clearly applies three techniques
targeting on each of the single challenges, degradation trend fitting, asset variety and multi-
regime. The other two solutions take the 2nd strategy. The 2nd place Heimes’ solution [33]
brings a mature tool that is specially developed for nonlinear dynamic system with
capability of dealing with uncertainty and complexity. The 3rd place Peel’s solution takes
advantages of Kalman Filter (KF) to treat variables as time series data integrating past
information and reduce noise in raw data and error in asset variety.

For PHM’10, RUL prediction with data scarcity which means only 3 assets of training
samples are available for predicting another 3 testing samples whose data is only partially
given, the champion’s solution [36] proposed by Das follows a classic and general PHM
solution workflow. The key point for his high accuracy prediction is attributed to
successfully finding a critical feature, harmonic of tooth pass frequency, and employing a
batch of 100 neural networks to deal with the data scarcity issue. The 2nd place solution
given by Chen [37] is developed in the framework of Bayesian statistic, but not using any
Bayesian inference methodology. Both of them are second category regression based
approach, however, the difference is Chen proposes an individual step of estimating the
initial wear state of the cutter instead of using the wear state related feature from last cut
as input of regression model in Das’ solution.

For PHM’12, RUL prediction with big challenges in handling an unclear degradation end-
of-life signature and unbalanced dataset, the champion Sutrisno developed three
independent solutions [38], two of them take the first strategy and another one take the
second strategy. For the solutions with a degradation indicator, Sutrisno’s Method 1 detects
an ideal degradation indicator, moving-averaged spectral (MAS) kutosis with a gradual and
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monotonic trend, then predicts the trend by Bayesian Monte Carlo; Sutrisno’s Method 3
extracts a “prognostic feature” by taking averaging of 5 maximum values of variables,
eventually calculate the end-of-life time using the ratio of multiple degradation stages
which can be easily observed. For the regression-based solution in Sutrisno’s Method 3,
also the only one in this competition, least squares-support vector regressor (LS-SVR) with
features in time domain and wavelet analysis is applied for exploring the underlying
relationship between features and RUL directly by the regression method, and achieved the
best performance in this competition. The 2nd place solution given by Wang [39] is actually
similar to Sutrisno's Method 1 in terms of its workflow, but using an health index extracted
by Principal Component Analysis (PCA) and T2 statistic. Though it applies some bearing
diagnosis techniques, such as bearing characteristic features and natural frequency
analysis, this method proposed does not have a strong capability of detecting the
degradation trend to overcome this challenge. By comparing the strategies took in different
solutions, we conclude that multi-stage degradation identification should be the key to RUL
prediction problem with unclear end-of-life trend.

For IEEE’14, RUL prediction with variety of static/dynamic regime, due to its unusual
dataset with only one sample in either training or testing dataset, it assumes that the variety
issues between different FC stacks can be neglected, and uncertainty observed in data only
comes from dynamic regime and testbed. The only solution published for this split task in
IEEE’14 by Kimotho [40] is developed based on Particle Filter method with a self-healing
factor adapted in each iteration. It tried 5 different state modes in the adaptive particle
filtering process and combine them using ensemble technique.

6. Conclusion: To conclude, all competitions in the past 9 years mainly involve the three
basic PHM tasks, health assessment estimating the machine or system health condition,
diagnostics finding the machine or system failure root cause, and prognostics predicting
the machine or system failure time before failure actually occurs. We found that health
assessment always supports diagnostics and prognostics. Based on the objectives of PHM
Data Challenge competitions, PHM’11, PHM’14 and IEEE’14 are categorized into health
assessment problems; PHM’09, PHM’13 and PHM’15 are categorized into fault
classification problems; PHM’08, PHM’10, IEEE’12 and IEEE’14 are categorized into
RUL prediction problems.

Most RUL prediction problems and fault prediction problem in PHM’15 consider multi-
asset and multi-regime issues. A fleet-based analysis, such as similarity-based approach, is
effective for RUL prediction with a large number of assets in PHM’08. Initial wear
estimation and ensemble technique are necessary in RUL prediction with data scarcity
issue. Multi-stage degradation identification is observed to be very effective in RUL
prediction problem with unclear end-of-life signature. Domain knowledge would
contribute the RUL modeling process only when some special effects have to be considered.
A good example of applying domain knowledge in RUL prediction is that a factor which
represents the self-healing behavior of fuel cell stacks is specially adapted into the particle
filter technique in the solution to RUL prediction in IEEE’14 [40]. A negative example is
that common bearing diagnosis technique such as characteristic features does not assist in
degradation trend detection in IEEE’12 [39]. After reviewing all solutions, two basic
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strategies can be summarized in RUL prediction: 1) finding a degradation indicator and
predicting the trend until a threshold; 2) direct mapping from extracted features to RUL by
regression. According to our review, both two strategies are capable of solving RUL
prediction as long as the algorithm of the selected strategy is used for a clear purpose and
targeting to the challenges.

Fault classification tasks focus less on multi-asset and multi-regime issues in the PHM Data
Challenge competitions. High quality features which require thorough exploration directly
impact the method’s performance. Prior expertise knowledge and data exploration is
critical to classification without training data in PHM’09. Building a multiclass classifier
in each time step has been seen as a general strategy for multi-objective task of fault
classification and prediction in PHM’15. Data selection and filtering is significant in the
situation with heterogeneous and complex dataset especially in inference based
classification problems. The benchmark in PHM’13 gives us a lesson that choosing a right
tool would be much more effective and efficient than trail-and-error based algorithm
selection.

Health assessment tasks in competitions have less concerns on regimes. Three problems
including PHM’11, PHM’14 and IEEE’14 in this category represents three levels of health
assessment according to their requirements, binary health/unhealthy detection, quantitative
health condition estimation using a self-defined health indicator and quantitative health
condition estimation using special indicator, respectively. According to our review, all
health assessment solutions rely on domain knowledge, e.g. wind profile equation used for
handling shear data in PHM’11, expertise related to maintenance policy used to define
PM/SM and CM in PHM’14, fuel cell property related domain knowledge used for
modeling fuel cell dynamic behavior in EIS spectrum. Since we have already known that
health assessment can possibly collaborate with any PHM related tasks, it implies that any
other problems, either diagnostics or prognostics, would heavily rely on domain knowledge
if health assessment is included.

6.1. Further Work: In this work, we only benchmark the algorithm performance for
PHM’13. In the future, similar algorithm benchmark needs to be conducted for other
competitions. In addition, other issues such as tradeoff between accuracy and efficiency of
PHM solutions and use of ensemble techniques also deserve further analysis. The problem-
centered review proposed in this paper could be extended to a wider range of resources,
such as publications based on the same datasets, publication with the same objectives or
using the same class of techniques, etc.
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