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Abstract: Condition based maintenance of machinery is being much talked about in the
engineering sector of defense and commercial industry. A lot of expenditure is generally
incurred on condition monitoring of machinery to avoid unexpected downtimes and
failures vis-à-vis optimizing machinery operation. The concept is ever evolving due to
technological advancements as well as with the emergence of unique nature of defects.
Vibration Analysis is a potent tool of condition monitoring for prediction and diagnostics
of machinery failures. Presently, time and frequency spectra are being widely used for
defect diagnostics of machinery. However, they require signal conditioning to eliminate
noise and to enhance resolution of spectrum. Extensive research in the area of signal
processing has been undertaken to refine time and frequency spectra. Notwithstanding
application of statistical tools for analysis of various defects in machinery using condition
monitoring data can be a viable option. Research in this area, where statistical models
have been applied, revealed encouraging results. In this paper, we have modeled bearing
vibration data by applying time varying Markov Switching Auto Regressive method
which was found very helpful in estimating RUL of machinery.
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Introduction: In real life, machinery operates in diversified conditions.  These conditions
include environment, adopted maintenance philosophy, operators/maintainer skills,
operating conditions etc. These operating conditions govern the machinery operation and
health; machines have similar released life by the manufacturer tend to fail at different
operational hours.

Prognostic on the basis of physical models is theoretically fine but its practical manifestation
in real time environment is difficult, as machinery life is governed by various known and
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unknown effects.  The effects generated on machinery during operations, at times, deprive
the implementation of physical laws due to multifarious physical changes being
encountered.

On the other hand, prognosis using data driven models, carries better practical manifestation
in real life.  Condition monitoring data provides a comprehensive understanding of
machinery condition under prevailing operating conditions.  This data while providing
various condition indications of machinery can be manipulated using different tools for
prognosis.  Taking lead from huge usage in the fields of finance and medical, data driven
techniques have become popular approaches for prognosis in engineering sector also. A
comprehensive review [1] shows that many of the prognostics designs are based on data
driven models.

Data driven methods are broadly divided in to two approaches i.e. Artificial Intelligence
(AI) and Statistical approaches.  AI approach has its unique computational power; however,
it requires an extensive expertise.  Comparatively, statistical methods are relatively easier to
adopt and apply.  Furthermore, it can be deduced from comparative analysis [2] that
statistical tools offer an easier and reliable prognostics framework.  Similar reviews for
different scenarios already presented also support the above argument [3], [4].

Statistical data driven methods include many linear and nonlinear methodologies. These
broadly include regression models, wiener processes, gamma processes, markovian
models, stochastic filtering based models, covariate based hazard models etc.
Comprehensive discussion on various statistical models with their suitability of
application is discussed in [5].

The nature of machinery operation involving nonlinearity and randomness is challenging
and carries modeling complexities for the estimation of machinery life.  Nonlinearity in
case of machinery can be a defect, whose propagation will be highly random under
prevailing operating and environmental conditions.  In term of statistics, the nature of this
damage propagation will be stochastic.  The situation becomes more complex when there
are several nonlinearities (defects), evolving randomly with time under varying operating
conditions [4].

Researchers have made enormous endeavors to estimate the machinery remaining useful
life focusing on nonlinearities and randomness discretely or in combination. Particle filter
method has been adopted by various researchers.  This method provides more accuracy as
compared to other algorithms.  It has a good capability to model nonlinear dynamical
systems with multivariate data [6],[7],[8] .  Hidden Markov Models [9],[10] is a good
tool for performing fault and degradation diagnosis on random dynamic systems with
multi failure modes specially when failure state is unobserved.  It can model different
stages of failures and can distinguish fault types in a component.

Wiener process also referred to as Brownian motion apply concept of random walk of
particle relating with machinery performance to measure the degradation.  However,
when we talk about the RUL estimation especially in case of a nonlinear phenomena then
the Wiener method has to assume the mean degradation path as linear; hence the
dynamics of nonlinearity cannot be adjudged efficiently [5], [11], [12]. Regression based
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models are common tools used for time series analysis as well as for RUL estimation due
to their simple application [5].  These models utilize various condition monitoring
independent variables regressed against some dependent variable to estimate the trend
and subsequent calculation of RUL.  The application of this tool is enough matured in the
field of economics, finance etc [13]. Other techniques including Principle Component
Analysis (PCA), Gaussian Mixture Model, Logistic Regression, Statistical pattern
recognition, Kalman filter, Match matrix, Support vector machine have been applied and
discussed for the machinery prognostics with detail in [1], [2], [3], [4].

In this paper we will discuss the application of Time Variant Markov Switching
Autoregressive Model to estimate remaining useful life considering Roller element
bearing (REB) as a case.

Bearing Prognosis: Roller Element Bearings (REB) are the most critical component of
machinery and a determinant of machinery health.  The loading of machinery either
internal or external is supported by the bearings.  Most of the condition monitoring tools
primarily focused on bearing health; especially vibration technology which evolved on
bearing health dynamics.

REBs are meant to eliminate sliding contacts between surfaces by use of rolling elements.
REBs may have balls or rollers and accordingly they are classified.  The REBs are
normally classified on the basis of No of balls/rollers, ball/rollers diameter, inner/outer
race diameter, pitch diameter etc. The four parts of REBs are balls/rollers, inner race,
outer race and cage as illustrated in ‘Figure 1’.

Figure 1: Deep Grooved Ball Bearing

Wear in bearings arises due to stresses in rolling contact surfaces.  Under normal
operating conditions with no defect, the wear process is linear.  However, when there is
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some abnormality induced like abnormal operating conditions, defects (misalignment,
foreign particle ingress, lubrication problems etc), then the stress level rises to enhanced
metal to metal contact causing various parts of bearings to deteriorate.  This deterioration
results in exponential trend of bearing wear.  The defects of bearings are seen as defect
frequencies in the vibration spectrum as Fundamental train frequency or cage frequency
(FTF), Ball pass frequency outer race (BPFO), Ball pass frequency inner race (BPFI) and
Ball spin frequency (BSF).

Dynamic models for bearing wear evolution have been studied by various researchers.
These include the modeling to study the effects of Elasto-Hydrodynamic lubrication,
excessive clearances, brinelling phenomena, non-uniform loading conditions, modulation
effects etc.  Moreover, frequency response in multi degree of freedom systems using
FEM and other mathematical tools has been under focused in various studies [14]. Beside
physical models, data driven models are also adopted by various researchers [15]. The
pros and cons of physics based and data driven based models have already been discussed
in preceding lines under introduction; same are also relevant for bearing application.

Experimental setup: Test rig is a simple arrangement driven by a 2 Hp variable speed
induction motor.  A customized designed shaft is then supported by two bearings.  The
test bearing UC-203 (deep groove ball bearing) follows the support bearings which will
be subjected to various radial and axial loading conditions, under modified housing.  A
screw type loading mechanism is installed for static load in radial direction and for axial
loading a load is mounted on shaft see ‘Figure 2’

Testing is done on the basis of varying loading and variable speed conditions.  The
concept of accelerated testing is adopted in order to perform the failure analysis with
varying static load from 0N-75N and a constant axial load of 100N. The analysis is
confined to the bearing only, in view of its criticality.  The data collection was conducted
using NI DAQ system.

Figure 2: Experimental Setup
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Model and Method: Markov switching model explained by [16] is studied to account
for nonlinearities in financial time series data and the auto regressive component to cater
for the non stationary process in the data. The model provides a appropriate methodology
to describe changes in the dynamic behaviour of machinery health data. It assumes the
presence of a finite number of states, whereby the parameters are allowed to take on
different values with regard to the regime prevailing at certain point of time. The regime
shifts arise from the outcome of an unobserved random variable which is assumed to
evolve following Markov chain. Consideration of time varying regime probabilities also
make this model practically suitable for scenarios where condition are not constant and
varying with time.

Model specification: Let y represents machinery health variable that undergo changes
over time. Considering this series as a subset of stochastic process whose probability
distribution depends on the realization of a hidden discrete stochastic process z . The
stochastic process y is directly observable, whereas z is a latent random variable that is
visible only indirectly through its effect on the identification of y . The changes in health
variable across different regimes are modeled by the regime switching “Equation (1)”:z = β + ∑ β , z + ϵ (1)

here ϵ is normally distributed term, so that ϵ ~N(0, σ ) and ‘s ’ unobserved discrete
state variable. Whereas parameter (β , ) depends on state variable St = i, i = 1,2,…,N
which represents regime in process at time t.

Statistical inference and estimation procedure: The MARKOV Switching Regression
model extends the simple exogenous probability framework by specifying the first order
Markov process for the regime probabilities followed by likelihood computation,
filtering, and smoothing.

Regime probabilities: The first order Markov assumption necessitates that the likelihood of
being in a regime depends on the preceding state as in “Equation (2)”, so that:( = | = ) = ( ) (2)

Normally, these probabilities are assumed to be time-invariant in order that ( ) = ∀
t. These probabilities in transition matrix form are shown in “Equation (3)”:

( ) = ( ) ⋯ ( )⋮ ⋱ ⋮( ) ⋯ ( ) (3)

here ij-th component signify the probability of transitioning from regime ‘i' in period t-1
to regime ‘j’ in period t. Since each row of the transition matrix indicates a full set of
conditional probabilities so a different multinomial specification for each row’ i’ is
required which is defined in “Equation (4)”:
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( , ) = ( )∑ ( ) (4)

= 1,… . , = 1,… , ℎ = 0
In Hamilton model [16], the regime probabilities are time invariant; however, in real life the
probabilities are not constant in time rather they are time variant.  In case of defect evolution
in machinery it may happen in case of non stationary conditions that the defect growth may
enhance due various loading/operating conditions in certain point of time.  In contrast to that
let [ ] illustrate the first order sample path then its two state Markov process with time
varying transition probabilities are explained by [17],[18] and represented in “Equation (5)”:

Time t
State 0                                      State 1

⎣⎢⎢
⎢⎢⎢
⎡ ( | , , °)° °( )( | , ∶ )

( )( | , , °)° °( | , ∶ )⎦⎥⎥
⎥⎥⎥
⎤
− 1 (5)

Here = (1, . , … , ( ). )= ( , , … , ( )) and i = 0, 1

Likelihood Evaluation and Filtering: The likelihood contribution for given observation is
computed by utilizing density function in each regime by the one step ahead probability of
being in that regime as shown in “Equation (6)”:( , , , ) = ∑ ∅ ( )( ) . ( = |ℑ , ) (6)= ( ,… , ), = ( , … , ), are parameters that determines the regime
probabilities ∅(. ) is the standard normal density function and ℑ is the information set in
period lag one. Besides in undemanding form represents the regime probabilities
themselves.

The full log-likelihood is normal combination of( , , , ) = ∑ ∑ ∅ ( )( ) . ( = |ℑ , ) (7)

“Equation (7)” can be maximized w.r.t ( , , , )
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Filtering process estimates the updated probabilities which are computed by utilizing Bayes’
theorem and the laws of conditional probability which can be expressed as “Equation (8)”:

( = |ℑ ) = ( = | , ℑ ) = = , , ℑ = , ℑ, ℑ
(8)

The right side of the expression (8) is obtained as a by-product of densities obtained during
likelihood estimation. On substitution we have “Equation (9)”:

( = |ℑ ) = ∅ ( )( ) . ( , )∑ ∅ ( )( ) ( , ) (9)

where represents vector of exogenous variables.

Smoothing: Estimates of the regime probabilities may be improved by using all of the
information given in the sample. The smoothed estimates for the regime probabilities in
period t use the information set in the final period, ℑ .,in contrast to the filtered estimates
which employ only contemporary information, ℑ . Intuitively, using information about
future realizations of the dependent variable ( > ) improves estimates of being in
regime m in period t, because the Markov transition probabilities link together the likelihood
of the observed data in different periods. Another approach for smoothing requires only a
single backward recursion through the data. Under the Markov assumption, the joint
probability is given by “Equation (10)” and “Equation (11)”:

( = , = |ℑ ) = ( = | = , |ℑ ). ( = |ℑ ) (10)

= ( , |ℑ )( |ℑ ) ( = |ℑ ) (11)

“Equation (12)” shows the smoothed probability in period t obtained by marginalizing the
joint probability with respect to :( = |ℑ = ∑ ( = , = |ℑ ) (12)

Initial Probabilities: The Markov Switching Filter requires initialization of the filtered
regime probabilities in period zero, ( = |ℑ ). There are few ways to proceed with
initial probabilities. Most commonly, the initial regime probabilities are set to the steady
state values implied by the Markov transition matrix. The values are thus treated as
functions of the parameters that determine the transition matrix. Alternately, prior
knowledge may be used to specify regime probability values, and lastly for treating of the
initial probabilities as parameters which are to be estimated.
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Application of Model: The dynamic behavior of Machinery health variables ( z )
observed over time is modeled by utilizing MASR with time varying transition
probabilities. In this regards two state Markov switching model is estimated in which z
is regressed over switching coefficients z and constant keeping AR(3) as non-varying
regressor. Maximum likelihood estimated equations for different regime with standard
deviation in parenthesis are shown “Equation (13)”:

z = ⎩⎪⎨
⎪⎧0.578 + 1.315 z + [AR(3) = 0.343] + ε Healty State(0.261) (0.359) (0.057)0.0821 + 0.813 z + [AR(3) = 0.343] + ε Unhealty State(0.013) (0.027) (0.057) (13)

with ε ~N(0, 0.085) and ε ~N(0, 0.057)
‘Equation (13)’ demonstrates that differences in the health state specific mean indicate
the growth of defects in machinery for the period under study. The probabilities values
for both regimes are significant (p < 0.05) which confirm that dynamics in both regimes
are substantial.

The time varying transition probability matrix of the predicted ‘Equation (13)’ is
presented in ‘Table 1’ which indicates that the probability of switching from healthy state
to unhealthy state is 0.4066, while remaining in healthy state is 0.5933.

Table 1: Time Varying Transition Probability Matrix.

Healthy State Unhealthy State
Healthy state 0.593398 0.406602
Unhealthy State 0.048505 0.951495

The variations in the estimates of time varying transition probabilities for the constructed
model in different states is presented in ‘Figure-3’ which reflect that machinery remain in
its healthy for more hours.
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Figure 3. Fluctuation in Time-varying Markov Transition Probabilities

The subsequent time varying expected durations depicted under ‘Table 2’ imply that
machinery remain in the healthy state for a longer duration before moving to unhealthy
state.

Table 2: Time Varying Expected Duration Matrix.

Healthy StateUnhealthy State
Mean 76.08617 49.90062
Std. Dev. 931.9972 23.58307

Based on above expected duration, the expected variation point between healthy &
unhealthy states is shown in ‘Figure 4’.
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Figure 4. Expected variation between two states

‘Figure 5’ exhibit the filtered high & low variance probabilities of being in the two health
states. The filtering process keeps on updating the estimated probability in order to
determine the likelihood of machinery health from one regime to the other. It is evident
from graph that machinery unhealthy states begin after 120 running hours.
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Figure 5.  Filtered high & low variance probability plot.
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‘Figure 6’ shows the real time instability in actual and forecasted health indicator which
demonstrates inconsistency in machinery health after its usage of about 120 running hours and it
keeps on growing afterwards. Its continuous handling without maintenance will distort the
mechanism after 164 running hours.
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Figure 6. Actual and forecasted health indicator signifying volatility in health parameter

The forecasted performance indicator with its estimated statistics are illustrated in ‘Table 3’
which authenticates the predicted model:

Table3. Forecasting performance statistics

Forecasting Performance
Indicator

Estimated
Statistics

RMSE 0.279202
MAE 0.108040
Theil Inequality Coefficient 0.183851

Bias Proportion 0.004359
Variance Proportion 0.098221

Conclusion:

In this communication two state of time-varying Markov-switching model is utilized to
machinery health variable as it permits the shift likelihood to fluctuate thoroughly with
information predictors which reflects the future health state of machinery. This
investigation signifies that machinery stayed in healthy state for a period of 116 hours
before becoming unhealthy. The real time performance of the machinery is also
forecasted by employing the estimated model. The forecasted performance statistics
signify the capability of the constructed model. Finding of this study will serve as a basis
for making suitable decision for machinery future operation.
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