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Abstract: Due to the fact that the combustion system, the core component of gas turbines,
works in the highly adverse environmental conditions of high temperature and high
pressure, it frequently faces malfunctions, causing catastrophic accidents. Hence,
anomaly detection plays an important role in helping the combustion system run safely
and economically. In recent decades, some methods have been published on anomaly
detection of the gas turbine combustion system. However, there are few studies that
compare these methods. The aim of this paper is to review and provide analytical results
of the anomaly detection methods. An overall assessment of the merits or weaknesses of
the generic methods is provided by testing the methods with actual gas turbine operating
data. Additionally, some possible research development of the anomaly detection of the
gas turbine combustion system is presented in this comparative study.
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Introduction: The technology of gas turbines has improved significantly over the past 50
years. As the efficiency of gas turbines increases, the combustion system, the core
component of the gas turbine, is subjected to severe thermal stress [1] and requires costly
maintenance [2]. Prognostics and health management (PHM) can be used to solve these
problems. Implementation of PHM can help gas turbines run safely and economically by
improving their reliability, safety, and availability, while reducing the operational costs.

The gas turbine combustion system works in the highly adverse environmental
conditions of high temperature, high pressure, and high speed. Malfunction of the
combustion system is often followed by catastrophic accidents. Anomaly detection plays
an important role in PHM systems, and usually focuses on detecting abnormal deviation
from its nominal behavior and detecting fault timely. Therefore, anomaly detection of
combustion system in gas turbines is particularly significant.

Typical faults in gas turbine combustion system include fuel uneven distribution,
fuel supply channel damage or leak, nozzle carbon deposition, nozzle jam, components
burn through, and so on. These faults may cause abnormal combustion chamber outlet
temperature. A gas turbine combustion system is usually installed with several
combustion chambers of the same structure. These chambers are equally arranged in the
circumferential direction. Outlet temperature of the normal combustion chamber is
almost same, while the outlet temperature of the malfunction combustion chamber is
different from the others. However, the combustor outlet temperature is very high, and
conventional sensors cannot work in such harsh environments for a long time.

The owners usually take advantage of the exhaustive gas temperature (EGT) to
monitor the performance of the combustion system. The EGT provides the most relevant
information about the state of the hot components, which is measured by several
thermocouples distributed equally at the outlet of the gas turbine. See Figure 1. All
exhaust thermocouple readings are almost identical when the unit is in normal operation,
while some exhaust thermocouple readings are different from the others when the
combustion system malfunctions. The EGT spread, the difference between different
thermocouples, can be treated as an indicator in anomaly detection of combustion system.
But there are many problems to be considered. The malfunction of the combustion
system is not the unique factor causing uneven temperature spreads. In normal operation,
some other factors can also cause uneven temperature spreads [3], including operation
conditions, ambient conditions, thermocouple position error, and manufacturing
tolerances. At the same time, the hot gas rotates following by blades and the degree of
rotation will vary with operation conditions. The hot gas from different combustion
chambers mixes in the turbine, which reduces the amplitude of the EGT spreads
compared with the spreads at the exit from the combustion chambers. Therefore, anomaly
detection of gas turbine combustion systems is complex.

Many studies have been published on anomaly detection of gas turbine combustion
systems. The research can be divided into two categories, including spread-based method
and model-based method. In this paper, these methods are reviewed. The merits or
weaknesses of the generic methods are discussed by testing the methods with actual gas
turbine operating data. The paper presents some possible research developments in the
anomaly detection of gas turbine combustion systems.
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Figure 1: Combustion Chambers and Thermocouples Distribution

Method Review
Spread-based Method: The EGT profile is almost equal when the combustion system is
in normal operation, while the EGT profile is uneven when there is a fault. This is an
important feature of the EGT. Based on this feature, the spread-based method monitors
the spread, the difference between different thermocouples, to identify the status of the
system. The spread is small when the combustion system is in normal operation, while
the spread is big when there is a fault. The spreads-based method is intuitive, so it is
commonly applied in industry. The monitoring system introduced in Ref [4, 5] shows that
the system monitors not only direct temperature but also variation in the exhaust gas
distribution from the average value. Large variation can indicate combustion problems. In
Ref [6], in addition to detecting the variation, combustion anomaly detection method also
monitors the maximum EGT, median EGT and average EGT as supplements. Gulen et al.
[7] introduce a heavy-duty industrial gas turbine real-time online performance diagnostic
system. In the system, excessive and sudden changes or consistent upward trends in the
ratio of the maximum EGT to the average value indicate the potential combustor
problems.

The spread-based method utilizes unevenness of the fault EGT profile to monitor the
performance of the combustion system. As mentioned above, some factors, operation
conditions, ambient conditions, thermocouple position error, manufacturing tolerances,
can also cause uneven temperature spreads. To remove the influence of the factors, the
average EGT value is usually treated as the representative of operation conditions and
ambient conditions in these methods. The value after subtracting or dividing by the
average EGT value is taken as the monitoring indicator. Obviously, this kind of method is
not very accurate. The average EGT value is roughly representative, and the relationship
between the average EGT value and operation conditions and ambient condition is more
complex. As one of the most widely used monitor systems, the MARK VI system [8]
produced by GE makes a correction. It defines a parameter S, allowable exhaust
temperature dispersion, which is the function of the average EGT value ∗ and the
compressor outlet temperature ∗ , as shown in Eq. ( 1 ), where (100) means the
equation should be added to 100 °F under the condition of variable operation condition.

( 1 )

The method calculates temperature differences between the maximum EGT and the
three minimum EGTs. The higher the ratio of the temperature differences to the
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allowable exhaust temperature dispersion, the greater the possibility of the failure.
However, some factors are still not considered, such as thermocouple position error,
manufacturing tolerances, and the gas rotation. In practice, the operators have found the
solution to lack adequate sensitivity, i.e., the hot components have been damaged
seriously once the alarm is generated [9].
Model-based Method: The model-based method take advantage of an EGT model to
detect anomaly in the gas turbine combustion system. The model may be built either from
prior physical knowledge of the gas turbine (physical model) or from some prior
identification based on a set of training data (data-driven model). The model-based
method mainly contains two approaches.

The first one can be described as Figure 2, and the residuals are usually an indicator.
The EGT model is built in normal operation. The output of model is the estimated EGT
value. If estimated EGT value and actual EGT value are almost same, their residuals will
be stable. Contrarily, if estimated EGT value and actual EGT value are totally different,
their residuals will increase. The abnormalities are then identified by corresponding high
residuals. The factors affecting EGT value in normal operation are taken into account by
the model. Therefore, building an accurate model is the key problem in the model-based
method.

Figure 2: Diagram of Model-based Method

In combustion system anomaly detection methods, artificial neural network (ANN)
is usually used to build the EGT model [10-12]. Artificial neural networks [13] are
computational models inspired by the neural structure of the brain that are capable of
machine learning and pattern recognition. Due to their high connectivity and parallelism,
ANNs can link, in a non-linear way, a multi-dimensional input space with a
multi-dimensional output space, allowing very high computational speed. Based on data,
ANN does not need to consider a complex physics principle. Tarassenko et al. [10]
present an EGT model of normality based on ANN and make use of the spatial
correlations in the EGT profile. When a fault develops in one of the combustion
chambers, there is a local effect on the temperature profile; only a small number of
contiguous thermocouples are significantly affected whilst the rest of the profile is largely
unchanged. The model of normality is therefore constructed by learning the function
relating the temperature values from the four thermocouples opposite it. Song et al. [14]
and Yılmaz [15] evaluate the relationship between EGT and operational parameters based
on a multiple linear regression. The operational parameters Song et al. consider include
low-pressure turbine outlet pressure, high-pressure rotator speed, high-pressure
compressor outlet temperature and outlet pressure, and low-pressure rotator speed.
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Yılmaz proposes that the fuel flow, thrust-specific fuel consumption, and take-off margin
temperature are determined to be the most significant operational parameters. Kumar et al.
[16] compare the statistical and neural network approach. As one of the breakthrough
technologies in machine learning, deep learning has begun to be applied in anomaly
detection of combustors. Stacked denoising autoencoder, one of the deep network
architectures, has been used to improve combustor anomaly detection [17].

There are some EGT physical models to be proposed. Korczewski [18] describes an
EGT physical model based on thermal and flow processes in gas turbines. Zhang [19]
considers the gas rotating and mixing in the gas turbine and presents an EGT physical
model. Medinaet al. [22] present an EGT model based on both basis function expansion
and the Brayton cycle.

The second model-based method utilizes the parameters of EGT model as an
indicator. The system can be described by the following equation= ( , ) + ( 2 )
where and the variables are observed, is white noise independent of , and
the parameter vector is .

The parameter vector θ characterizes the system, which can be identified based on
measurements. We can have a nominal model denoted by for such a system. Slight
deviations of the actual system from its nominal behavior indicate early fault of the
system [20].

Based on this opinion, a new indicator is presented in Ref [21]. Two main factors
affecting the EGT value in normal operation are considered, including the operating and
ambient conditions, and the structure deviation of different combustion chambers caused
by processing and installation errors. Moreover, some studies focus on the parameter
estimation and detection. Medina, P. et al. [22] analyzes the parameters with statistical
techniques and with wavelets to detect abrupt changes in combustion chambers. The
estimation is known to be biased because of the noisy input. M. Basseville et al. [23]
present an asymptotic local approach for change detection to solve the problem.

Experiment: To assess the merits and weaknesses of the generic methods, two cases are
presented in this section. The operating data come from the Taurus 70 gas turbine
produced by Solar Turbines. The gas turbine has 12 combustion chambers and 12

thermocouples to measure the EGT. The gas turbine operated 14,407 min in normal
operation, as can be seen in

Figure 3. The normal operation data are used as the training set. In the first case, the fault
data comes from actual operation. Figure 4 shows the fault EGT data in the first case. In

the second case, the fault data is constructed by normal data. The 7th exhaust
thermocouple reading downs 10 ºC slowly at 500 min, as shown in

Figure 5. The training set is used to determine the threshold of the indicator. The other
data is used to detect if the indicator exceeds the threshold. If the threshold is not
exceeded, it means the system is normal. Otherwise, the system has an anomaly.
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Figure 3: EGT in Normal Operation
Condition

Figure 4: Fault Data in Case 1

In this section, the method introduced in Ref [5] is applied as the typical
spread-based method. The detection indicator is variation in the exhaust gas distribution
from the average value. The method introduced in Ref [10] is applied as the typical
model-based method. The two models are, respectively, an ANN model and a physical
model. In this paper, a three-layer ANN model is built. The output signal is an EGT value,
and the input signals are EGT values of the four thermocouples opposite it. The neural
node number in the hidden layer is 20. The detection indicator is the model’s residuals.

Figure 5: Fault Data in Case 2
Figure 6: 7th Thermocouple Reading in

Case 2

The detection results are shown in
Figure 7 to Figure 11. As we can see in

Figure 7 and Figure 10, the spread-based method can detect the fault in the combustion
system, but it is powerless to detect slight faults. In comparison, the model-based method
performs much better. It can detect both serious and slight faults. However, it still has
problems.
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Figure 8 reflects the model accuracy. The residual of training data has some sudden
change because of operation condition changes. It causes a wider threshold and then

affects the detection sensitivity. As shown in
Figure 12, if the fault also happens at 500 min, but at a much slower deterioration rate,
the model-based method is not sensitive as expected. It means the model could be
modified more accurately to further improve the detection sensitivity.

Figure 7: Spread-based Method Detection
Result in Case 1

Figure 8: Model-based Method Training Data
Detection Result in Case 1 (4th

thermocouple)

Figure 9: Model-based Method
Detection Result in Case 1 (4th

thermocouple)

Figure 10: Spread-based Method Detection
Result in Case 2
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Figure 11: Model-based Method Detection
Result in Case 2 (7th thermocouple)

Figure 12: Model-based Method Detection
Result in Case 3 (7th thermocouple)

Conclusions: The vulnerability of combustion chambers in gas turbines motivated
researchers to develop and advance various anomaly detection methods and tools. In this
paper, a review of spread- and model-based methods was presented with a description of
their pros and cons. Although the spread-based method was easy to realize in real
applications, it was not suitable to detect anomalies in gas turbines operating under
non-stationary conditions. Instead, the spread-based method was generally suitable for an
over-temperature alarm. The model-based method has become an alternative for the
detection of anomalous behavior of thermodynamics in combustion chambers. This was
mainly because the model-based method has been more effective for facilitating anomaly
detection under non-stationary conditions rather than the spread-based method. However,
the performance of the model-based method depends on the accuracy of the model that
represents the normal behavior of gas turbine combustors. The model-based method can
be improved in some aspects. For instance, the fundamental understanding of the failure
mechanisms of combustion chambers can improve the accuracy of the model. Likewise,
the inclusion of prior physical knowledge in the data-driven model can be a potential
research direction that can enhance the accuracy of the model and be used for anomaly
detection.
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