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Abstract: Autocorrelation is a special case of cross-correlation wherein a signal is
correlated with a time-lagged version of itself – the resulting signal comprises only the
periodic information from the original signal whilst eliminating noise. This property of
autocorrelation can be particularly useful in analyzing bearing faults since vibration data
from a bearing, with local faults/defects, consists of cyclostationary acceleration signals
usually contaminated with noise from sensors and other environmental factors. This study
introduces a method which provides early failure warning in rolling element bearings by
applying an autocorrelation operation to vibration data. The Sequential Probability Ratio
Test (SPRT) is used to detect anomalies indicative of incipient failure. The results from the
autocorrelation analysis are compared with results from a simple moving-RMS analysis of
the acceleration data. The developed method is shown to provide an earlier warning of
failure than the RMS-based method. This method can detect early stages of degradation in
bearings – which in turn allows earlier scheduling of maintenance and the avoidance of
system failures.
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Introduction: Bearings are load-bearing elements in machines, the smooth functioning of
which proves to be critical in the failure-free operation of the system of which they are a
part. Rolling element bearings, especially, are some of the most widely used components
in mechanical systems and the failures of such systems are most frequently attributed to
the failure of these bearings [1]. Owing to their criticality, early detection of faults in
bearings is desired. Consequently, fault detection in bearings has been studied extensively.
Vibration-based fault detection is the most common and reliable approach to this problem
[2]. The emphasis on the vibration-based diagnostic techniques stems from the fact that a
force impulse is generated every time a rolling element strikes a fault on a supporting
bearing surface (inner race or outer race of the bearing). The series of impulses generated
by such interactions between the fault and the rolling elements generally generates an
amplitude modulated cyclostationary signal which can then be analyzed for fault
signatures. The frequency spectrum of such a signal consists harmonics of resonance
frequencies excited by the impulses and spaced at the bearing fault frequency. However,
raw vibration signals are usually riddled with noise and disturbances produced by the
system itself, as well as other external sources. In the domain of vibration-based fault
detection, envelope analysis [3] is an established method of obtaining the bearing fault
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frequencies from the vibration signal. The general procedure for envelope analysis involves
initial pre-processing using a high-pass filter to remove low-frequency noise and then
inspecting the envelope spectrum of the resulting signal for bearing fault frequencies.
Several improvements have been suggested over the original envelope analysis method.
For instance, fast Fourier transform (FFT) is the most widely used technique to analyze
spectra. Employing Hilbert transform for demodulation also allows effective extraction of
the relevant section of the signal spectrum [4]. However, most methods in the domain of
vibration-based fault detection focus on the raw vibration signal in the frequency domain.
The frequency domain approach is suitable since extraction of fault frequencies provides
detailed information about the nature and the location of the fault because fault frequencies
are intrinsically related to the geometry of the bearing.

However, our study focuses on the early detection of a bearing fault (rather than gleaning
information about location, nature or the extent of the fault) by examining the vibration
signal time domain rather than the frequency domain. Analyses in the time domain involve
extraction of various features from the temporal vibration signal such as mean, standard
deviation, skewness, kurtosis, etc. Changes in these features over time are then used as
indicators of health of the bearing. Advanced approaches in the time domain analysis
involve fitting temporal signals to parametric time series models, followed by extraction
of features from the parametric model. Popular methods of this type are the autoregressive
(AR) model and autoregressive moving average (ARMA) model. Poyhonen et al. [5] fit
vibration signals to an AR model and used the model coefficients as features for fault
detection. The technique proposed by Garga et al. [6] uses AR modeling followed by
dimensionality reduction. However, the AR and ARMA models are complex to model.
Baydar et al. [7] studied the use of Principal Component Analysis (PCA) for analyzing
time domain vibration signals from gears. For analyzing non-stationary signals, time-
frequency domain analysis may be applied to such vibration signals. Time-frequency
domain methods represent vibration signals in both time and frequency domain. The
resulting distributions represent the energy of the signal and can help understand how the
energy of the signal is distributed across different frequency bands over time. Popular time-
frequency domain techniques include short-time Fourier transform [8] [9] and Wigner-
Ville distribution [10] [11] [12] [13]. In this paper, a fast, new and computationally
inexpensive method based on the autocorrelation function and SPRT is introduced. The
rest of this paper is organized as follows. The next section provides theoretical background
of autocorrelation and SPRT. Then, the developed bearing fault detection methodology is
delineated - a new parameter called normalized autocorrelation function range (Rrange) is
then introduced and the methodology explained. Experimental results are provided to
demonstrate the effectiveness of the developed method in the context of bearing fault
detection. Finally, conclusions about the developed method are discussed.

The next section discusses the autocorrelation function, normalized autocorrelation
function and their properties. A theoretical background of SPRT is then provided. Finally,
the method is tested using an open-source dataset and the results are compared with an
equivalent fault-detection method based on the RMS of the vibration of the signal.
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Autocorrelation Function: Given a signal ( ), the continuous autocorrelation function( ) is defined as the continuous cross-correlation integral of ( ) with itself, at lag :( ) = ∫ ( ) ( − ) (1)

Alternatively, the autocorrelation function given above can be modified by including a
normalizing factor to obtain the normalized autocorrelation function ( ):

( ) = ∫ ( ) ( )
(2)

where is the variance of ( ). The benefit of normalization is twofold. Firstly, it limits
the range of autocorrelation function to [−1,1]. Secondly, it provides a scale-free
measure of similarity between different moments of the signal ( ).
A New Health Indicator for Bearing Fault Detection: When a bearing is operating in a
defect-free state, the vibration signal collected from the bearing is composed primarily of
noise from the system. However, the vibration signal from a faulty bearing is composed of
different periodic components. This is due to the periodic nature of the impulses generated
when the rolling-element impacts a defect on the outer or the inner race of the bearing. This
effect has a direct bearing on the autocorrelation function. As these periodic components
appear in the vibration signal, the magnitude of correlation between different moments of
the vibration signal increases. In other words, the measure of similarity between different
regions of the vibration signal increases. To capture this change in the magnitude of the
autocorrelation function, a new parameter called normalized autocorrelation function
range ( ) is defined for a given signal ( ) as:= max ( ) − min ( ) (3)

Sequential Probability Ratio Test (SPRT): The sequential probability ratio test (SPRT)
is used to track any change in the magnitude of which is then used as an indicator
of the health of the bearing. SPRT is a statistical hypothesis test which determines whether
the test data falls into the probability density distribution of the base line training data [14]
[15]. The SPRT detects changes in the test data by comparing a null and alternative
hypotheses. The null hypothesis is the case in which the test data adheres to a Gaussian
distribution with a mean of 0 and a variance of extracted from the training data, which
represents the normal test data. There exist four alternative hypotheses - the
positive/negative mean test, the normal variance test, and the inverse variance test. For the
positive/negative mean test, the alternative hypotheses are that the test data follows a
Gaussian distribution with a mean of +M or -M and a variance of , where M is a pre-
determined system disturbance level. The SPRT index is the logarithm of the ratio of the
probability that the alternative hypothesis is true to the probability that the null hypothesis
is true. Given the null and alternative hypotheses, the SPRT index is given as
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= ∑ − (4)

where are successive observations of the test data. The SPRT index is continuously
calculated and compared to the lower and upper threshold limits which are set by the user
and determined by the desired level of sensitivity to detection. When the SPRT index is
less than the lower threshold, it can be concluded that the test data is normal. When the
SPRT index is greater than the upper boundary indicates that the test data is abnormal. The
SPRT test can thus be used detect any deviation in the normalized autocorrelation function
range from the base line data.

Methodology: Data from the bearing with outer race faults was analyzed for warning of
an impending fault. The raw vibration signal in the time domain was used for the purpose
of this analysis. The developed fault detection method is outlined in Fig. 2.  The vibration
signal is first divided into non-overlapping windows. The length of each window was fixed
at 50000 samples. Thus, each window corresponds to a signal duration of 2.5 seconds.
Selecting a window size of 50000 samples can be justified by the fact that the ball pass
frequency for an outer race fault is ~236 Hz for this bearing. This implies that the interval
between two consecutive impulses is ~1/236 = 0.0042 s. Since the sampling frequency is
20000 Hz, the interval between two consecutive impulses is ~86 samples. Hence, a window
size of 50000 samples is sufficient to capture any fault related periodic components in the
vibration signal. The normalized autocorrelation function was then computed for the first
window. This autocorrelation function corresponding to the first window was then used to
compute the normalized autocorrelation function range . This value was recorded
and saved. This constituted one iteration. This procedure was then repeated sequentially
for every window, the values for their corresponding windows were saved. After
each iteration, the SPRT test was used to detect deviation in the values. The first
SPRT detection was used as the early warning of impending failure.

Figure 1 Flow chart of the developed fault detection method

Test Setup and Data Collection: Bearing run-to-failure tests under constant load
conditions were performed on a specially designed test rig, as shown in Fig.1, with bearing
data from a data repository [16]. The bearing test rig hosts four test Rexnord ZA-2115
double row bearings on one shaft. Table 1 lists the geometrical specifications of the
bearing. The shaft is driven by an alternating current motor and is coupled by rub belts.
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The rotation speed was kept constant at 2000 rev/min. A radial load of 6000 lb. was added
to the shaft and bearing. A PCB 353B33 high-sensitivity quartz Integrated Circuits
Piezoelectric (ICP) accelerometer was installed on each bearing housing. The sampling
rate is 20 kHz. Vibration data were collected every 20 min. The full life data from five
representative bearings (named bearings 1–5, respectively) whose faults include inner race,
outer race, and ball defect are available.

Figure 2 Test setup

Table 1 Geometrical specifications of the rolling element bearing

Number of rolling elements n 16
Diameter of rolling element d 8.4 mm
Pitch diameter of bearing D 71.5 mm

Contact angle γ 15.17 ̊

Results: The developed method was applied to the vibration signal corresponding to an
outer race fault. Fig. 3 shows the normalized autocorrelation function range plotted as a
function of the window number. Up to window number 200, the trend in is uniform.
The deviation in this trend is evident after window number 200. This deviation corresponds
to the onset of the fault in the bearing. The process of damage propagation in a bearing
involves onset of fault and damage aggravation followed by self-healing. Self-healing is
the mechanism by which the spalls or cracks during damage propagation are smoothed out
by continuous rolling contact which returns the bearing to a healthy or near-healthy state
[17]. This mechanism continues until the bearing fails. In Fig. 3, the region between
window numbers 300-350 corresponds to this self-healing mechanism. In order to
automate the process of detection, SPRT was applied to this data. values for the
first 200 windows was used as the base line data since these windows correspond to the
healthy section of the vibration signal from the bearing and the SPRT test is used to detect
deviation from this base line data. It is expected that as the damage in the bearing
accumulates, SPRT will indicate an alarm value of ‘1’, indicative of a fault and return to
‘0’ as the bearing self-heals. Hence, only the first SPRT detection is used as a fault
indicator. For the developed method, the first detection was at window number 251. In
order to compare this result with an equivalent method, the root mean squared (RMS) value
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of each window was used. Fig. 4 shows the RMS values for each window. For SPRT
detection, the RMS values of first 200 windows were used as base line data. In this case,
the first SPRT detection is observed at window number 308 i.e. once the bearing is already
in the self-healing state [17].

Figure 3 Normalized autocorrelation function range and first SPRT detection using the developed
method.

Figure 4 RMS-based fault detection method and first SPRT detection using this method

The results show that the developed method can detected the fault (at window number 251)
much early compared to the RMS-based method which detected the identical fault only

First SPRT detection at window number 308

First SPRT detection at window number 251
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after window number 308. The difference between the first detection by both methods ~3
minutes.

Effect of Window Size: For the first study, a window size of 50000 samples was chosen.
As discussed in the section on methodology, this window size was sufficient to capture any
periodic impulse which may have occurred due to a fault in the bearing. To study the effect
that selecting different window sizes has on the time of detection, the developed method
was tested with seven different window sizes – 20000 to 80000 (at intervals of 10000
samples). For every window size, the percentage remaining useful life (% RUL) – time
from first detection to bearing failure - was computed, for both, the developed method and
the RMS-based method. The results are presented in Figure 5. As the window size was
increased, the % RUL at the time of first detection decreased. Hence, a smaller window
size is preferred. However, it must be ensured that the window size is large enough to
capture the periodic impulses i.e. the size of the window must be larger than the time
between two impulses. Also, with increasing window size the decrease in % RUL (at time
of first detection) was more significant in the case of the RMS-based method than the
developed method. This demonstrates the robustness of the developed method. In every
case, the developed method based on autocorrelation had smaller detection times for the
fault than the RMS-based method. In the case where the window size was 20000 samples,
the developed method was able to detect the fault with ~40% of the life of the bearing
remaining. In the case where window size was 80000 samples, the developed method
detected the fault with ~35% of the life of the bearing still remaining. In the same case, the
RMS-based method provided a failure warning with only ~15% of the bearing life
remaining.

Figure 5 Effect of choosing different window sizes on the time of first SPRT fault detection
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Conclusions: Bearings play a critical role in a mechanical system and early detection of
bearing faults is desired to avoid system failure and to schedule early maintenance. This
paper presents such a method for rolling element bearings. The developed method utilizes
the normalized autocorrelation function to compute a new scale-free parameter called
normalized autocorrelation function range ( ) which is used to characterize the state
of the system. Sequential probability ratio test (SPRT) is then used to detect a fault based
on the deviation of from base line data. The developed method has been compared
with an equivalent RMS-based method using the same vibration data. The method,
although rudimentary, provides a promising way of performing prognostics for rolling-
element bearings. In the set of experiments performed, the developed method consistently
detected the fault in the bearing with ~35-40% bearing life remaining. Since this method
involves computation of only one parameter for determining the health of the system, it is
computationally inexpensive, takes less than 5 seconds to execute (for the bearing vibration
data used in this study) and can be easily integrated into larger system-level prognostics
and health-management (PHM) setups.
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