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Abstract:  Centrifugal Fans are subjected to blade-pass pulsation and mass imbalance 
forces as part of normal operation.  Fan impellers have several n-nodal diameter modes of 
natural frequency that can be sensitive to blade-pass pulsation forces.  Excitation of these 
modes can lead to catastrophic failure.  The principal flexural mode of a fan rotor is 
sensitive to mass imbalance force, and if excited, can result in amplified stresses in the 
shaft and amplified force transmission to the bearings.  In the case of SWSI fan rotors, 
where the 1-nodal diameter mode of the impeller couples with the flexural mode of the 
shaft, excitation of the rotor mode can lead to catastrophic failure of the impeller. 
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Introduction:  Fans are used for a wide variety of industrial and commercial 
applications.  There are two primary types of fans, centrifugal (sometimes referred to as 
radial) and axial.  This paper concentrates on the structural dynamics of centrifugal fans.  
A centrifugal fan system consists of a rotor (fan wheel and shaft), stationary components 
(fan housing, scroll, inlet cone, dampers, pedestals and foundations) and interface 
components (bearings). 

There are two basic types of centrifugal fans.  The first type is called a double-wide, 
double-inlet (DWDI) fan.  A picture of a large DWDI fan rotor is shown in Figure 1. It 
consists of a shaft and a fan wheel.   The fan wheel is typically mounted at the mid-span 
of the shaft, an equal distance from each bearing.  Because the fan wheel is located at 
mid-span, its stiffness does not contribute significantly to the rotor dynamic properties.  
However, its mass is a significant factor in the rotor dynamic properties.  

The second type of centrifugal fan is the single-wide, single-inlet (SWSI) fan. The 
location of the fan wheel on the shaft can vary for this type of fan.  It can be cantilevered 
outside of the bearings, or located between the bearings as shown in Figure 2.  In either 
case, the center-of-gravity of the fan wheel is not located at mid-span of the shaft, a 
condition which complicates the rotor dynamics thereof. 



 

Figure 1:  Photograph of a DWDI Fan Rotor Hanging in Slings 

 

Figure 2: Photograph of a SWSI Fan Rotor Hanging in Slings 

Air enters the DWDI fan wheel from both sides, flowing radially from the center of the 
fan to the trailing edge of the blades.  Air enters the SWSI fan wheel from only one side.  
Dynamic forces produced by centrifugal fans as part of normal operation include 
imbalance forces and blade-pass pulsation forces.  Fan rotors must be designed to operate 
subjected to these dynamic forces. 



The natural frequencies of the fan wheel can be very sensitive to dynamic pressure 
pulsations produced either as a part of normal operation or by unusual aerodynamic 
circumstances.  Catastrophic failures have been attributed to the excitation of natural 
frequencies of fan wheels by dynamic pressure pulsations (Figure 3). 

  

Figure 3: Examples of Fan Wheel Failures Attributed to BPPF Pulsations 

Blade Pass Pressure Pulsations:  All fans produce dynamic pressure pulsations as the 
blade tip passes by the cutoff point in the housing scroll.  Figure 4 shows a cross section 

of a housing scroll.  The outer diameter 
of the fan is indicated as a dotted line.  
The fan in this illustration would be 
rotating in a counterclockwise 
direction.  Air would exit the fan wheel 
radially into the housing and flow along 
the scroll until it exits the housing at the 
upper left quadrant.   

The distance between the outer 
diameter of the fan and the scroll 
gradually increases from the cut-off 
point to the discharge.  When a blade 
rotates past the cutoff point, it develops 
a force that produces a dynamic 
pressure pulsation.  The blade pass 
pulsation frequency (BPPF) is equal to 
the rotational speed of the fan 

multiplied by the number of blades.  For example, a 10-bladed fan rotating at 1200 rpm 
would produce dynamic pressure pulsations at 12,000 cpm or 200 Hz.  

 

Figure 4: Cross Section of Housing Scroll 



Blade pass pulsations can be detected by spectral analysis of dynamic pressure data.  
Testing for blade pass pressure pulsations is easily done by installing a dynamic pressure 
transducer into the sidewall of the housing or duct.  The response of the housing or duct 
to blade pass pulsations can also be detected with an accelerometer placed on the surface 
of the housing or duct. 

 

Figure 5 contains a spectrum of data acquired from a large 10-bladed induced-draft (ID) 
fan operating at 1195 rpm (19.9 Hz) using a piezoelectric dynamic pressure transducer.   
A spectral peak is clearly evident at the blade-pass pulsation frequency (199.0 Hz).  The 
magnitude of the dynamic pressure developed from the BPPF was around 1.0 inches 
H2O.  The magnitude of this dynamic pressure is very small and is not typically large 
enough to damage a fan wheel.  However, if the frequency of the dynamic pressure is 
near a natural frequency of a fan wheel, resonant amplification of stresses can cause 
failure.  The mode of the natural frequency must be sympathetic to the BPPF force in 
order for resonance to be a problem. 

An understanding of the modes of natural frequency of a fan wheel is imperative in order 
to assess the potential severity of resonant excitation by dynamic BPPF pressure.  A finite 
element analysis (FEA) of a ten-bladed DWDI centrifugal fan was performed to illustrate 
the various modes of natural frequency of a fan wheel.  The fan wheel used for this 
example was a type that is typically employed for large induced draft (ID) fans, similar to 
that shown in Figure 1. 

 

Figure 5: Frequency Spectrum of Pressure Pulsations 



n-Nodal Diameter Modes:  All centrifugal fans have a set of modes of natural frequency 
that are called the n-nodal diameter modes.  The general form of the mode shapes for 
these natural frequencies are such that the maximum deformations occur at the outer 
diameter of the wheel, at the trailing edge of a blade.  The n-th degree of the mode 
represents the number of maximum deformations (nodal) points in either the positive or 
negative directions. 

The n-nodal diameter modes can be very sensitive to dynamic pressure pulsations if the 
frequency of the dynamic pressures is close to the natural frequency of the wheel.  
Excitation of these modes can lead to the catastrophic failure of the fan wheel.  These 
modes are especially sensitive when the n-th order of the mode is an integer factor of the 
number of blades in the fan wheel.  For instance, the two-nodal diameter and five-nodal 
diameter modes would be very sensitive to blade pass pulsations produced by a ten-
bladed fan.  Likewise, the two-nodal diameter and four-nodal diameter modes would be 
very sensitive to blade pass pulsations produced by an eight-bladed fan.  

Typically, only a few of the n-nodal diameter modes are present in most fans within the 
frequency range bounded by the blade pass pulsation frequency (BPPF).  The natural 
frequency associated with these modes will increase with the n-th order of the mode.  For 
example, the natural frequency of the four-nodal diameter mode will be greater than the 
natural frequency of the three-nodal diameter mode, which will be greater than the 
natural frequency of the two-nodal diameter mode.  

With the exception of the nodal circle and wheel wobble modes, the participation of the 
shaft in any of the other n-nodal diameter modes is negligible.  Since the deformation of 
the fan wheel is independent of the shaft, the transmission of vibration to the shaft and 
bearings is minimal when these natural frequencies are excited.  Therefore, the excitation 
of these modes is difficult to detect during operation.  If excited, catastrophic failure can 
occur with very little warning.   

2-NODAL DIAMETER MODE: The two-nodal diameter mode is often referred to as the 
“chip” mode or “butterfly” mode since the deformed shape resembles a potato chip or 
butterfly.  Figure 6 is an end view of the 2-nodal diameter mode for the example fan.  The 
natural frequency was calculated at 128.5 Hz by the FEA. The mode shape is made up of 
a combination of axial and radial response. The radial and axial deformations of the side 
plates have two maximum positive and two maximum negative locations.  The axial 
deformations of the side plates are in-phase while the radial deformations of the side 
plates are out-of-phase with each other.  

The radial deformations dominate in wide fan wheels while the axial deformations 
dominate in narrow fan wheels. The 2-nodal diameter mode can be sensitive to dynamic 
forces applied either in the axial or radial direction and, thus, would be susceptible to 



Figure 6: 2-Nodal Dia Mode Figure 7: 3-Nodal Dia Mode 

excitation by BPPF forces if the natural frequency and blade-pass frequency were to be 
near each other.  For most DWDI fans, the separation margin between the natural 
frequency of the 2-nodal diameter mode and the BPPF is sufficient to preclude the 
resonant excitation of the mode.  For the 10-bladed fan, the rotational speed would have 
to be reduced to around 780 rpm for the resonant excitation of this natural frequency, 
which was calculated at 128.5 Hz, to become an issue (BPPF = 780x10/60 = 130 Hz).  
Excitation of this mode is more common in variable-speed fans that operate at lower 
speeds.  

If the natural frequency for this mode is excited, the deformation at any location in the 
wheel, either axial or radial, is countered by an equal and opposite deformation at another 
location.  Because of these deformation characteristics, the inertia of this mode does not 
transfer to the shaft and the shaft does not participate in this mode.   The 2-nodal diameter 
mode of a fan wheel can be excited, but not detectable by transducers at bearings.  Strain 
gage testing is required to confirm excitation of this mode. 

3-NODAL DIAMETER MODE:  Figure 7 shows the end view of the FEA result for the 
3-nodal diameter mode.  This mode has both axial and radial response. The radial and 
axial deformations of the side plates have three maximum positive and three maximum 
negative locations.  The axial deformations of the side plates are in-phase while the radial 
deformations of the side plates are out-of-phase with each other.   

The natural frequency for this mode was calculated to be 204.3 Hz by the FEA .  Note 
that this natural frequency is greater than the natural frequency of the 2-nodal diameter 
(128.5 Hz) mode.  This is typical for all fan wheels because the complexity of the shape 



Figure 8: 4-Nodal Dia Mode 

increases as the order of the mode increases.  It is more difficult to deform the fan wheel 
into a 3-lobed than a 2-lobed pattern.  

The 3-nodal diameter mode can be sensitive to dynamic forces applied either in the axial 
or radial direction. It would be susceptible to excitation by BPPF forces if the natural 
frequency and blade-pass frequency were to be near each other.  The 3-nodal diameter 
mode is more sensitive in 9-bladed and 12-bladed fans since the n-th order of the mode is 
an integer multiple of the number of blades (9/3 = 3 and 12/3 = 4). 

For the 10-bladed fan, the BPPF would be around 200 Hz if the rotational speed of the 
fan were 1,200 rpm (BPPF = 1,200x10/60 = 200).  In this case, the natural frequency of 
this fan would be in close proximity to the blade pass frequency.   

Like the 2-nodal diameter mode, the deformation at any location in the wheel, either axial 
or radial, is countered by an equal and opposite motion at another location.  Since the 
inertia of the wheel does not transfer to the shaft, the shaft does not participate in this 
mode.  Even though the excitation of this natural frequency results in significant vibration 
within the fan wheel, it typically is not detectable by vibration probes mounted to the 
bearings.   

4-NODAL DIAMETER MODE:  Figure 8 shows the end view for the 4-nodal diameter 
mode.  This mode also consists of a combination of both axial and radial response, each 
having four maximum positive and four maximum negative locations.  The axial 
deformations of the side plates are in-phase while the radial deformations of the side 
plates are out-of-phase with each other.   

The natural frequency for this mode 
was estimated by the FEA as 247.6 
Hz.  This natural frequency is greater 
than the natural frequency of both the 
2-nodal diameter (128.5 Hz) and 3-
nodal diameter (204.3 Hz) modes.   

The 4-nodal diameter mode can be 
sensitive to dynamic forces applied 
either in the axial or radial direction.  
The 4-nodal diameter mode is more 
sensitive to BPPF in 8-bladed and 12-
bladed fans since the n-th order of the 
mode is an integer multiple of the 
number of blades (8/4 = 2 and 12/4 = 
3). 



Figure 9: 5-Nodal Dia Mode 

For the 10-bladed fan, the BPPF would be around 248 Hz if the rotational speed of the 
fan were 1,488 rpm (BPPF = 1,488x10/60 = 248).  In this case, the natural frequency of 
this fan would be in close proximity to the blade pass frequency.  

Once again, the motion at any location in the wheel, either axial or radial, is countered by 
an equal and opposite motion at another location. The inertia of this mode does not 
transfer to the shaft.  Because of this, the shaft does not participate in this mode.  Since 
the shaft does not participate, even though the excitation of this natural frequency results 
in significant vibration within the fan wheel, it typically is not detectable by vibration 
probes mounted to the bearings.  

5-NODAL DIAMETER MODE:  Figure 9 shows the end view of the FEA result for the 
5-nodal diameter mode.  This mode has both axial and radial response. The radial and 
axial deformations of the side plates have five maximum positive and five maximum 
negative locations.  The axial deformations of the side plates are in-phase while the radial 
deformations of the side plates are out-of-phase with each other.  

The natural frequency of this mode 
was calculated to be 264.3 Hz by the 
FEA.  Note that this natural 
frequency is greater than the natural 
frequency of the 2-nodal diameter 
(128.5 Hz), 3-nodal diameter (204.3 
Hz), and 4-nodal diameter (247.6 
Hz) modes. The 5-nodal diameter 
mode can be sensitive to dynamic 
forces applied either in the axial or 
radial direction.  The 5-nodal 
diameter mode is more sensitive in 
10-bladed fans since the n-th order of 
the mode is an integer multiple of the 
number of blades (10/5 = 2). 

For the 10-bladed fan, the BPPF 
would be around 264 Hz if the 

rotational speed of the fan were 1,584 rpm (BPPF = 1,584x10/60 = 264).  In this case, the 
natural frequency of this fan would be in close proximity to the blade pass frequency.   

Once again, the motion at any location in the wheel, either axial or radial, is countered by 
an equal and opposite motion at another location, the inertia of this mode does not 
transfer to the shaft.  Because of this, the shaft does not participate in this mode.  It 
typically is not detectable by vibration probes mounted to the bearings.    



Sensitivity of n-Nodal Modes:  The results of an impact test can be used to illustrate the 
sensitivity of the n-Nodal diameter modes of a centrifugal fan wheel.  Figure 10 is the 
time waveform and transfer function for an impact test performed on a large induced-
draft (ID) fan wheel.  This test was performed with the rotor hung from flexible nylon 
straps, approximating a nearly free-free support condition (Figure 1). 

 

 

Figure 10: Waveform & Transfer Function (Natural Frequency Test of Fan Wheel) 

The time waveform of the “ring-down” response shows that the fan wheel continues to 
vibrate over 30 seconds after application of the impact force.  This is indicative of very 
lightly damped modes of natural frequencies.  In fact, the damping factor for these modes 
are typically around 0.10% of critical damping (ζ ~ 0.001).  This low amount of damping 
would result in an amplification factor of around 500:1. This means that a cyclic 
operating stress of only 20 psi, caused by pulsation in a non-resonant fan wheel, would 
increase to 10,000 psi if the BPPF and the n-Nodal mode frequency would coincide. 

The transfer function curve shows the many n-nodal diameter modes of the fan wheel.  
The narrow and steep transfer function curves also indicate lowly damped sensitive 
modes.  



 

Figure 11: Notch-Strain Fatigue Life Curve 

The notch strain-life method can be used to demonstrate the sensitivity of the n-nodal 
diameter modes. This method is described by a low-cycle fatigue component and a high-
cycle fatigue component.  Per Equation 1, the addition of these two components provides 
an estimate for the number of fatigue cycles to failure (2N) when subjected to a given 
cyclic stress (Δσ/2) and constant mean stress (σm). 

(Δσ/2) = (σf` - σm)(2N)b + (εf`)E(2N)c    Equation 1 

Where σf` is the fatigue strength coefficient, b is the fatigue strength exponent, εf`is the 
fatigue ductility coefficient, and c is the fatigue ductility exponent.  References [1][2][3] 
are available that provide values for these coefficients and exponents for various 
materials.  

The left side of Figure 11 contains the log-log plot of each term.  When added together, 
these terms provide the fatigue life curve on the right side of Figure 11.   

Fan wheels are subjected to numerous cycles of stress reversal in a very short time.  For 
instance, consider a 10-bladed fan operating at 1,180 rpm.  The fan wheel is subjected to 
196 stress reversal per second.  The accumulation of stress reversals in a single day 
would equal nearly 1.7 million.  

For cases of high-cycle fatigue, the fatigue life equation is dominated by the first term of 
Equation 1 and can be simplified to Equation 2. 

(Δσ/2) = (σf`- σm)(2N)b   Equation 2 

 

 



Sensitivity Example:  Consider two double-wide, double-inlet (DWDI) fan wheels of 
identical design, operating at 1,180 rpm (19.67 Hz).  Both fan wheels have 10 blades and 
are subjected to pressure pulsations at blade-pass pulsation frequency (BPPF = 10 x 
19.67 = 196.7 Hz).  One fan experienced a fatigue failure shortly after initial start-up 
while the second did not experience any failures and had been operating on another unit 
at the same power plant for some time. 

Figure 12 shows the fan rotor after 
the initial catastrophic failure of the 
first wheel.  All of the blades and the 
side plates are missing from the 
wheel.  This failure is consistent with 
the excitation of an n-nodal diameter 
mode of natural frequency, but since 
the second wheel had not failed, the 
failure investigation concentrated on 
other possible root-causes (i.e. 
foundation inadequacy, process 
parameters, acoustic amplification of 
pulsations, turbulence). 

Modal testing and finite element 
analysis of the fan wheel provided 
an estimate of 196.0 Hz for the “stress stiffened” natural frequency associated with the 4-
nodal diameter mode. Figure 8 shows the deformation shape for this mode.  If excited, it 
results in distortion within the wheel that leads to large stresses in the welded connections 
between the blades and side plate.  Failure of the side plates then leads to excess stresses 
in the welded connections between the blades and center plate, resulting in the failure 
pattern displayed in Figure 3 and Figure 12.  If this were indeed the root-cause of the 
catastrophic failure, why didn’t the second fan wheel fail? 
 
The mean tensile stress developed by centrifugal forces, at the intersection of the blade 
tips and the side plate, was 40,000 psi for both fans.  For the material used to manufacture 
the fans, (σf` = 170,000, b = -0.087) the high-cycle fatigue life equation was: 
 

(Δσ/2) = (σf`- 40,000)(2N)b
 = 130,000(2N)-0.087        Equation 3 

 
The damping factor (ζ ) for this mode was 0.003, or 0.30% of critical.  This very low 
level of damping resulted in a very large resonant amplification factor.  The ratio of the 
blade pass pulsation frequency to the natural frequency for the fan wheel that failed was r 
= 196.7/196.0 = 1.0035. 

Figure 12: Fan Rotor after Wheel Failure 



The amplification factor for resonance is given by Equation 4.  
 

AF = = 1/[(1- r2)2 + (2ζr)2]1/2    Equation 4 
 
Without resonance amplification, the cyclic stresses that would have been developed in 
the fan wheel due to BPPF were estimated at +/- 240 psi.  Substituting the frequency ratio 
(r = 1.0025) for the fan that failed into Equation 4 yields an amplification factor of 108.4.  
This means that the cyclic stresses caused by the blade pass pulsations could have been as 
much as 26,000 psi. Substituting this cyclic stress into Equation 3 yields an estimated 
fatigue life of 100E06 cycles. 

 
Figure 13: Final Failure Scenario after Crack Propagates Through Side Plates 

 
The fan was subjected to 199.7 cycles of stress reversals per second, or 17.25E06 cycles 
per day.  This means that the predicted fatigue life to crack initiation would be around 
140 hours, which was consistent with the time of the actual catastrophic failure.  Figure 
14 is a photograph of a fan wheel that was removed from service before fatigue cracking 
propagated to final failure.  In this case, fatigue cracks initiated in the side plate at the 
trailing edge of almost every blade tip.  
 
Figure 13 is a finite element representation of the final failure scenario.  Fatigue cracks 
that initiated at several locations on the side plates, have propagated completely through 
the side plates. The pieces of blades and side plates become masses cantilevered off of 
the center plate.  Centrifugal forces acting on each cantilevered section result in high 



stresses at the intersection point of the blades and center plate.  The final catastrophic 
failure at this point is not fatigue, but overload due to the large centrifugal stress, in this 
case exceeding the ultimate tensile strength of the material. 
 
Now consider that the natural frequency of the second wheel was lower than that of the 
first wheel by only 1.0% (fn ~ 194.0 Hz). It is not unusual for the natural frequencies 
associated with the n-nodal diameter modes to differ slightly from one wheel of identical 
design to another. The frequency ratio for the second fan wheel increased to 1.014. 
Because of the steep gradient of the amplification curve, the resonant amplification factor 
decreased to 35.1 and resulting dynamic cyclic stress was around 8,420 psi.  This 
seemingly small reduction in natural frequency resulted in a significant reduction in 
stress.  The predicted fatigue life for this lower cyclic stress was 50E12 cycles, which 
was more than the expected useful life of the fan.  
 
This example illustrates the sensitivity of the n-nodal diameter modes and the importance 
of designing a fan wheel such that these natural frequencies are not close to the blade-
pass pulsation frequency.   
 
There are other sources of pulsation that a fan can produce that are not considered as 
normal operating conditions, such as rotating stall pulsations and vortex shedding from 
dampers.  These occur at frequencies other than the BPPF.  It is difficult to design a fan 
wheel not to be resonant at these other frequencies since they are not expected to occur 
under normal operating conditions and their frequencies vary from fan-to-fan.  

 
Figure 14:  Fatigue Crack Initiation in Fan Wheel 



Rotor Dynamics of SWSI Fan Rotor: For a DWDI fan, the wheel “wobble” mode and 
the shaft flexural modes will be independent of and orthogonal to each other.  The modal 
characteristics of a SWSI fan rotor are more complex.  For the SWSI fan rotor, the shaft 
flexural and wheel “wobble” modes will combine with each other and form two 
orthogonal flexural modes. Textbook formulae that treat the wheel as a lumped mass, 
ignoring its flexibility, cannot provide an accurate estimate of the actual natural 
frequency.  This is illustrated in the following example. 

Consider the engineering formula given in Equation 5 for the SWSI fan rotor shown in 
Figure 15.  For this example, the fan wheel weight (W) equals 1,450 lbs., the span 
between bearings (L) equals 39.5 inches, the overhang distance (c) equals 14.7 inches, 
and the diameter of the shaft is 5 7/16 inches.  The shaft is made of carbon steel (E = 
29,600,000 psi). 

  

 

 

   Natural Frequency = fn = (1/2π)[k/M]1/2       Equation 5 

Where:   k = flexural stiffness of the shaft = 3EI/(L + c)c2 

   M = mass of the fan wheel 

Substituting the known values into Equation 5, provides a calculated natural frequency of 
46.4 Hz for the flexural mode of the rotor.  Note that the mass of the shaft is neglected in 
this equation.  Will the exclusion of the mass of the shaft result in an overestimation of 
the natural frequency?  The answer is yes, but it is not the only reason that the actual 
natural frequency will be overestimated using the textbook formula.  This equation not 
only neglects the mass of the shaft, assuming it to be negligible compared to that of the 
fan wheel, but also treats the fan wheel as a rigid component.   

Figure 15: SWSI Fan Rotor Dimensions 



In reality, centrifugal fan wheels are very flexible structural components.  An assumption 
that the fan wheel is rigid compared to the shaft is an oversimplification that will lead to 
erroneous results. 

A single-wide, single-inlet (SWSI) fan 
wheel has blades on only one side of the 
back plate, and only one inlet side plate, 
sometimes referred to as the inlet shroud.  
The blades and the side plate are 
supported by and cantilevered off of the 
back plate (see photo in Figure 16).  
Since the back plate is a flexible 
structure, it results in another spring in 
the spring-mass system.  Therefore, it 
cannot be treated as a single degree-of-
freedom system, for which Equation 5 is 
only valid. 

Figure 17 shows two separate spring-mass systems.  
Equation 5 is analogous to the lower system in the 
figure.  There is only one spring, and it is associated 
with the flexural stiffness of the shaft.  The mass of 
the fan wheel (M1) is lumped along with the mass of 
the shaft (M2). 

The actual condition is better represented by the 
spring-mass system in the upper system.  The lower 
mass represents the effective mass of the shaft.  The 
lower spring represents the flexural stiffness of the 
shaft.   The upper mass and spring represent the fan 
wheel. 

Since the upper spring-mass system is a two degree-
of-freedom system, it will have two natural 
frequencies.  The motion of the masses will be in-
phase with each other in the first mode of natural 
frequency.  The motion of the masses will be out-of-
phase in the second mode.    

Figure 16: SWSI Fan Wheel 

Figure 17: Spring-Mass Models 



The natural frequency of the single degree-of-freedom model will be somewhere between 
the natural frequencies for the modes in the two degree-of-freedom system. 

If f’n1 is the natural frequency of the single degree-of-freedom system and fn1 and fn2 are 
the natural frequencies of the two degree-of-freedom system, then: 

fn1 < f’n1 < fn2 

Figure 18 shows the mode shape for a finite element analysis (FEA) of the example 
SWSI fan rotor.  FEA [4] is a numerical technique that can account for the mass of the 
shaft and the flexural flexibility of the fan wheel.  The mode shape in Figure 18 is for the 
case where the flexural displacement of the fan wheel is in-phase with the flexural 
displacement of the cantilevered section of the shaft.  The natural frequency estimated by 
the FEA is 26.0 Hz, which is much less than the natural frequency (46.4 Hz) provided by 
Equation 5.   

 

 

Figure 19 shows the mode shape for another natural frequency.  This mode shape is for 
the case where the flexural displacement of the fan wheel is out-of-phase with the 
flexural displacement of the cantilevered section of the shaft.  The natural frequency 
estimated by the FEA is 107.3 Hz, which is much greater than the natural frequency (46.4 
Hz) provided by Equation 5. 

Figure 18: Mode Shape for Natural Frequency = 26.0 Hz 



The significance of this analysis is that the textbook formula will always overestimate the 
natural frequency and provide an unrealistic estimate of the separation margin between 
the operating speed of the fan and its natural frequency.  If the fan in the example above 
were to operate at 1800 rpm (30 Hz), the textbook formula provides a rather significant 
separation margin (fo/fn = 46.4/30 = 1.55).  The more realistic FEA analysis would 
indicate a much lower separation margin (fo/fn = 26.0/30 = 0.87).  The textbook formula 
indicates that the principal “at rest” natural frequency of the rotor is 55% above operating 
speed, while the actual “at rest” natural frequency is closer to 13% below operating 
speed. 

Stress Stiffening: The operating natural frequencies of rotating parts of machines, such 
as fan wheels, pump impellers, and turbine blades, can be different from the “at rest” 
natural frequencies.   Impact tests are performed on a rotor when it is in an idle condition.  
Therefore, the impact test provides the “at rest” natural frequencies of the rotor.  During 
operation, the rotor will become stiffer due to centrifugal stresses and gyroscopic affects.  
Since natural frequency is a function of stiffness and mass, and the mass of the rotor is 
unchanged, the natural frequencies will increase as the centrifugal stress stiffening effects 
increase.  Figure 20 displays the relationship between the natural frequency of a 
centrifugal fan wheel versus its operating speed.  Note that since centrifugal stress 
increases with the square of rotational speed, the rate of increase in natural frequency is 
more rapid at higher speeds. The amount of increase in the natural frequency is not only 
dependent upon the rotational speed of the fan, but on the amount of centrifugal stress.  
Thus, it can vary widely from one fan design to another. 

Figure 19: Mode Shape for Natural Frequency = 107.3 Hz 



Figure 20: Stress Stiffening Curve 

The importance of stress stiffening is that, if an inappropriate single dof model is used to 
estimate the natural frequency of a SWSI fan rotor, there is a good chance that the actual 
“at rest” natural frequency will be less than the operating speed of the fan.  Since stress 
stiffening will increase the natural frequency during operation, there is a chance that the 
natural frequency and operating speed will be too close to each other.  It is imperative 
that the numerical technique used to design the fan rotor provide an accurate assessment 
of the nature frequency.  
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