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Abstract: Dual-rotor system is an important rotor form in rotating machinery like gas 
turbine engine. Its complex structure results in rich dynamical behaviors and more 
probability to failure. The modeling and simulation of the dual-rotor system can help to 
understand its dynamic characteristics and provide theoretical support for the design, 
operation and maintenance. In this paper, a dynamic model of a dual-rotor system with 
multiple rotor faults is established. The dual-rotor vibration model without any fault is built 
by finite element method, where the two shafts are connected by an inter-shaft bearing and 
nonlinear models of rolling element bearing and squeeze film damper are considered. The 
numerical integration method of Newmark-β is used to obtain the steady-state vibration 
response of the system. Then rotor faults are introduced to the system model, including 
unbalance, misalignment, looseness and rub-impact. The steady-state responses of single 
faults in the dual-rotor system are analyzed and typical fault features are obtained. Then 
coupling characteristics between different rotor faults, and the influences of the squeeze 
film dampers on the dynamic characteristics and fault features of the system are studied. 
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Introduction: Dual-rotor is a common form of rotor system in rotating machinery like 
aero-engines. The high-pressure rotor and the low-pressure rotor are coupled via an inter-
shaft bearing, and the speed of the rotors are different and variable, making the vibration 
signals more complex than general rotating machinery. The modeling and simulation of the 
dual-rotor system and rotor faults can help to understand their dynamic characteristics and 
provide theoretical support for the design, operation and maintenance of the rotor. The 
finite element model turn the continuous flexible structure into finite discrete elements, 
obtains rich internal information, and are also convenient to add nonlinear forces, which is 
suitable for numerical calculation [1, 2]. Processing the flexible parts as finite elements and 
the parts of large stiffness as discrete lumped masses could reduce the complexity of the 



system model and ensure the accuracy of simulation results at the same time, making it a 
more efficient modeling approach [3, 4]. 
Rolling element bearings and squeeze film dampers are introduced in rotor models in forms 
of nonlinear external forces. The earliest complete rolling element bearing model was 
established by Gupta in 1975, which had 2 degrees of freedoms (DOFs) and Hertzian 
contact, the non-linearity and time-varying characteristics are considered in. Later more 
nonlinear factors had been taken into consideration in this bearing force model by other 
researchers, like bearing race clearance and the rolling element slippage. Squeeze film 
damper is a type of fluid-film bearing whose simplest form consists of an oil-filled annular 
cavity surrounding the outer race of a rolling element bearing. In aero-engines where 
rolling element bearings provide little damping, squeeze film dampers are widely used to 
introduce additional damping to attenuate vibration. The cavitated short bearing theory is 
employed for calculating the fluid-film forces in a damper, as the outer race of the bearing 
acts as the damper’s journal and is prevented from rotating but allowed to whirl. 
In this paper, a finite element approximate model of an aero-engine dual-rotor system 
which includes nonlinear models of rolling element bearings and squeeze film dampers are 
established. Steady-state vibration response of the dual-rotor system is obtained by solving 
the dynamic equation of the system. Then models of typical rotor faults are introduced to 
the system by adding nonlinear forces to the generalized external force vector. Simulated 
faults include rotor unbalance, rotor misalignment, support looseness, and dynamic-static 
rub-impact. Vibration responses of single rotor faults are calculated and fault features are 
obtained. Those fault features are compared with situations with the absence of squeeze 
film dampers. Vibration responses of situations with more than one rotor fault are 
calculated, whose fault features are also compared with ones of single fault situations. 
 
Dynamic model of the dual-rotor system: The dual-rotor system consists of two rotors 
connected by an inter-shaft bearing. Each rotor is composed of a flexible shaft, rigid discs 
and supports. The schematic of the rotor system is shown in Figure 1. The support 
arrangement of the rotor is similar to the actual aero-engine rotor.  
The shafts are modelled with finite element method by using the 3-D elastic beam element. 
The 3-D elastic beam element has 2 nodes and each node has 6 degree of freedoms (DOFs), 
which are translations in the X, Y and Z directions and rotations around the X, Y and Z 
directions. The DOFs and the motion equation of the element are: 

 𝑞𝑞e = �𝑢𝑢𝑥𝑥1,𝑢𝑢𝑦𝑦1,𝑢𝑢𝑧𝑧1,𝜃𝜃𝑥𝑥1,𝜃𝜃𝑦𝑦1,𝜃𝜃𝑧𝑧1,𝑢𝑢𝑥𝑥2,𝑢𝑢𝑦𝑦2,𝑢𝑢𝑧𝑧2, 𝜃𝜃𝑥𝑥2,𝜃𝜃𝑦𝑦2,𝜃𝜃𝑧𝑧2�
𝑇𝑇
 (1) 

 𝑀𝑀𝑒𝑒𝑞̈𝑞𝑒𝑒 + (−𝜔𝜔𝐺𝐺𝑒𝑒)𝑞̇𝑞𝑒𝑒 + 𝐾𝐾𝑒𝑒𝑞𝑞𝑒𝑒 = 0 (2) 
𝑀𝑀𝑒𝑒 is the consistent mass matrix, 𝐺𝐺𝑒𝑒 is the gyroscopic matrix, 𝐾𝐾𝑒𝑒 is the stiffness matrix 
and 𝜔𝜔 is the rotational speed. 
The rigid discs are modelled as discrete lumped masses using the 3-D mass element which 
has one node with 6 DOFs. The DOFs and the motion equation of the element are: 



 𝑞𝑞e = �𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦,𝑢𝑢𝑧𝑧 ,𝜃𝜃𝑥𝑥,𝜃𝜃𝑦𝑦, 𝜃𝜃𝑧𝑧�
𝑇𝑇
 (3) 

 𝑀𝑀𝑒𝑒𝑞̈𝑞𝑒𝑒 + (−𝜔𝜔𝐺𝐺𝑒𝑒)𝑞̇𝑞𝑒𝑒 = 𝑄𝑄𝑒𝑒 (4) 
𝑄𝑄𝑒𝑒 is the external force vector and could be the unbalance force or other types of excitation 
on the disc. 
As shown in the Figure 1, the shaft of the low-pressure (inner) rotor has been divided into 
17 elements and has 18 nodes, and the shaft of the high-pressure (outer) rotor has been 
divided into 18 elements and has 19 nodes. The shafts lie along the X direction. Combine 
all the elements of a shaft and discs together, the motion equation of one rotor is: 

 𝑀𝑀𝑖𝑖
𝑟𝑟𝑞̈𝑞𝑖𝑖𝑟𝑟 + (𝐶𝐶𝑖𝑖𝑟𝑟 − 𝜔𝜔𝑖𝑖𝐺𝐺𝑖𝑖𝑟𝑟)𝑞̇𝑞𝑖𝑖𝑟𝑟 + 𝐾𝐾𝑖𝑖𝑟𝑟𝑞𝑞𝑖𝑖𝑟𝑟 = 𝑄𝑄𝑖𝑖𝑟𝑟 , 𝑖𝑖 = 1,2 (5) 

𝐶𝐶𝑟𝑟 is the damping matrix which is using Rayleigh damping for simplicity and is in the 
form of proportional damping [5] as: 

 𝐶𝐶𝑟𝑟 = 𝛼𝛼𝑀𝑀𝑟𝑟 + 𝛽𝛽𝐾𝐾𝑟𝑟 (6) 
The rotor system model is established by assembling all the finite elements and add the 
external forces. The motion equation could be written as: 

 𝑀𝑀𝑠𝑠𝑞̈𝑞𝑠𝑠 + (𝐶𝐶𝑠𝑠 − 𝜔𝜔𝐺𝐺𝑠𝑠)𝑞̇𝑞𝑠𝑠 + 𝐾𝐾𝑠𝑠𝑞𝑞𝑠𝑠 = 𝑄𝑄𝑠𝑠 (7) 
𝑄𝑄𝑠𝑠 is the generalized external force vector of the system, which contains the unbalance 
forces, the weight forces, and the nonlinear forces of the rolling element bearings and the 
squeeze film dampers: 

 𝑄𝑄𝑠𝑠 = 𝐹𝐹𝑢𝑢 + 𝑊𝑊 − 𝐹𝐹𝐵𝐵 + 𝐹𝐹𝐷𝐷 (8) 
The unbalance force on the disc is the main excitation of this dynamic model. The nonlinear 
equation of the rotor system model is solved by the explicit Newmark-β method. This 
numerical integration approach is suitable for obtaining the dynamic response of a 
nonlinear system. Then the displacement, velocity and acceleration at each node of the 
finite element model can be obtained. 
 

 
Figure 1. Dual-rotor system model. 

 
Rolling element bearing model: The rotor is supported by rolling element bearings. Here 
a nonlinear multi-body dynamic model is used [6, 7], which is shown in Figure 2. The 



rolling element bearing model is assumed as nonlinear springs with no mass and evenly 
arranged along the rolling element raceway. The inner race of the bearing is assumed to be 
fixed to the shaft and the outer race is modelled as a lumped mass.  
When the rotor rotates at constant speed of ω, the cage speed is 𝜔𝜔𝑐𝑐. The angular position 
of the 𝑖𝑖th rolling element at time 𝑡𝑡 will be 𝜃𝜃𝑖𝑖. 

 𝜔𝜔𝑐𝑐 =
𝜔𝜔
2
�1 −

𝑑𝑑
𝐷𝐷

cos𝛼𝛼� (9) 

 𝜃𝜃𝑖𝑖 =
2𝜋𝜋(𝑖𝑖 − 1)

𝑍𝑍
+ 𝜔𝜔𝑐𝑐𝑡𝑡 + 𝜃𝜃0 + (0.5 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) × 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠    𝑖𝑖 = 1, 2, …𝑍𝑍 (10) 

𝜃𝜃0 is the initial position of the first rolling element. (0.5 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) × 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the phase 
deviation caused by slippage. The value of phase variation 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 could be 0.01 ~ 0.02 rad. 
If the displacement of the shaft (𝑥𝑥𝑠𝑠,𝑦𝑦𝑠𝑠) and the outer race (𝑥𝑥𝑜𝑜 ,𝑦𝑦𝑜𝑜) is known, the contact 
deformation for the 𝑖𝑖th rolling element is given as: 

 𝛾𝛾𝑖𝑖 = (𝑥𝑥𝑠𝑠 − 𝑥𝑥𝑜𝑜) cos 𝜃𝜃𝑖𝑖 + (𝑦𝑦𝑠𝑠 − 𝑦𝑦𝑜𝑜) sin 𝜃𝜃𝑖𝑖 − 𝛿𝛿    𝑖𝑖 = 1, 2, …𝑍𝑍 (11) 
𝛿𝛿 is the initial clearance between the rolling elements and the bearing races. The rolling 
elements are compressed only when 𝛾𝛾𝑖𝑖  is positive, so the contact deformation will be 
multiplied by a factor as: 

 𝜆𝜆𝑖𝑖 = �1 𝛾𝛾𝑖𝑖 > 0
0 𝛾𝛾𝑖𝑖 ≤ 0 (12) 

According to Hertzian contact theory, the contact force of the 𝑖𝑖th rolling element is: 
 𝑓𝑓𝑖𝑖 = 𝑘𝑘𝑏𝑏(𝜆𝜆𝑖𝑖𝛾𝛾𝑖𝑖)𝑛𝑛 (13) 

𝑘𝑘𝑏𝑏  is the contact stiffness factor and can be obtained from geometric and material 
properties of the contact between the rolling element and the inner race or the outer race. 
The exponent 𝑛𝑛 is 3/2 when the bearing is a ball bearing and 10/9 when a roller bearing. 
The total bearing force can be calculated by summing the contact force of each rolling 
element in the X and Y directions: 

 

⎩
⎪
⎨

⎪
⎧𝐹𝐹𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑏𝑏�(𝜆𝜆𝑖𝑖𝛾𝛾𝑖𝑖)𝑛𝑛 cos 𝜃𝜃𝑖𝑖

𝑍𝑍

𝑖𝑖=1

𝐹𝐹𝐵𝐵𝐵𝐵 = 𝑘𝑘𝑏𝑏�(𝜆𝜆𝑖𝑖𝛾𝛾𝑖𝑖)𝑛𝑛 sin 𝜃𝜃𝑖𝑖

𝑍𝑍

𝑖𝑖=1

 (14) 

 
Squeeze film damper model: The squeeze film damper (SFD) is mounted between the 
outer race of a rolling element bearing and a bearing pedestal. The outer race forms the 
non-rotating journal of the squeeze film damper, and are supported by centering strings [8-
10]. The model of SFD is shown in Figure 2. 
Theoretical oil-film forces in squeeze film dampers are obtained by integrating the pressure 
distribution over the entire damper surface. Based on the Reynolds equation and the short 
bearing approximation, the pressure distribution in a π-film damper may be derived as: 



 𝑝𝑝(𝜃𝜃, 𝑧𝑧) = −
6𝜇𝜇
𝑐𝑐2
�
𝐿𝐿2

4
− 𝑧𝑧2�

𝜀𝜀𝜙̇𝜙 sin 𝜃𝜃 + 𝜀𝜀̇ cos 𝜃𝜃
(1 + 𝜀𝜀 cos 𝜃𝜃)3  (15) 

In the equation, 𝜀𝜀 and 𝜀𝜀̇ respectively are the eccentricity ratio and velocity in the radial 
direction. 𝜙̇𝜙  is the angular velocity. 𝜃𝜃  is the angular position measured from the 
maximum film thickness end of the line of centers. 𝐿𝐿 is the length of the damper, 𝑧𝑧 the 
position in the axial direction, 𝑐𝑐  the damper’s radial clearance, and 𝜇𝜇  the dynamic 
viscosity of the oil. 
Positive pressures occur for 𝜃𝜃1 < 𝜃𝜃 < 𝜃𝜃1 + 𝜋𝜋 when 

 𝜀𝜀𝜙̇𝜙 sin𝜃𝜃 + 𝜀𝜀̇ cos 𝜃𝜃 < 0  𝑎𝑎𝑎𝑎𝑎𝑎 tan𝜃𝜃1 =
𝜀𝜀̇

−𝜀𝜀𝜙̇𝜙
 (16) 

Then the oil film forces can be integrated as: 

 𝐹𝐹𝑟𝑟 = −
𝜇𝜇𝜇𝜇𝐿𝐿3

𝑐𝑐2
�𝜀𝜀̇𝐼𝐼1 + 𝜀𝜀𝜙̇𝜙𝐼𝐼2� (17) 

 𝐹𝐹𝑡𝑡 = −
𝜇𝜇𝜇𝜇𝐿𝐿3

𝑐𝑐2
�𝜀𝜀̇𝐼𝐼2 + 𝜀𝜀𝜙̇𝜙𝐼𝐼3� (18) 

where 

 𝐼𝐼1 = �
cos2 𝜃𝜃

(1 + 𝜀𝜀 cos 𝜃𝜃)3 𝑑𝑑𝑑𝑑
𝜃𝜃1+𝜋𝜋

𝜃𝜃1
 (19) 

 𝐼𝐼2 = �
cos𝜃𝜃 sin𝜃𝜃

(1 + 𝜀𝜀 cos𝜃𝜃)3 𝑑𝑑𝑑𝑑
𝜃𝜃1+𝜋𝜋

𝜃𝜃1
 (20) 

 𝐼𝐼3 = �
sin2 𝜃𝜃

(1 + 𝜀𝜀 cos𝜃𝜃)3 𝑑𝑑𝑑𝑑
𝜃𝜃1+𝜋𝜋

𝜃𝜃1
 (21) 

The closed form expressions of the integrals have been evaluated analytically as: 

 𝐼𝐼1 =
𝜀𝜀 sin𝜃𝜃1 (3 + (2 − 5𝜀𝜀2) cos2 𝜃𝜃1)

(1 − 𝜀𝜀2)2(1 − 𝜀𝜀2 cos2 𝜃𝜃1)2 +
𝛼𝛼(1 + 2𝜀𝜀2)
(1 − 𝜀𝜀2)2.5  (22) 

 𝐼𝐼2 = −
2𝜀𝜀 cos3 𝜃𝜃1

(1 − 𝜀𝜀2 cos2 𝜃𝜃1)2 (23) 

 𝐼𝐼3 =
𝜀𝜀 sin𝜃𝜃1 (1 + (𝜀𝜀2 − 2) cos2 𝜃𝜃1)

(1− 𝜀𝜀2)(1− 𝜀𝜀2 cos2 𝜃𝜃1)2 +
𝛼𝛼

(1 − 𝜀𝜀2)1.5 (24) 

 𝛼𝛼 =
𝜋𝜋
2

+ arctan �
𝜀𝜀 sin𝜃𝜃1

(1 − 𝜀𝜀2)0.5� (25) 

Suppose the displacement of the outer race (𝑥𝑥𝑜𝑜 ,𝑦𝑦𝑜𝑜) and the bearing pedestal �𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝�, 

and the velocity of the outer race (𝑥̇𝑥𝑜𝑜 , 𝑦̇𝑦𝑜𝑜) and the bearing pedestal �𝑥̇𝑥𝑝𝑝, 𝑦̇𝑦𝑝𝑝�, so 

 𝑥𝑥 = 𝑥𝑥𝑜𝑜 − 𝑥𝑥𝑝𝑝, 𝑦𝑦 = 𝑦𝑦𝑜𝑜 − 𝑦𝑦𝑝𝑝 (26) 
 𝑥̇𝑥 = 𝑥̇𝑥𝑜𝑜 − 𝑥̇𝑥𝑝𝑝, 𝑦̇𝑦 =  𝑦̇𝑦𝑜𝑜 −  𝑦̇𝑦𝑝𝑝 (27) 



 𝜀𝜀 =
𝑒𝑒
𝑐𝑐

=
�𝑥𝑥2 + 𝑦𝑦2

𝑐𝑐
, 𝜀𝜀̇ =

𝑥𝑥 ∙ 𝑥̇𝑥 + 𝑦𝑦 ∙ 𝑦̇𝑦
𝑐𝑐�𝑥𝑥2 + 𝑦𝑦2

 (28) 

 𝜙𝜙 = arctan
𝑦𝑦
𝑥𝑥

, 𝜙̇𝜙 =
𝑥𝑥 ∙ 𝑦̇𝑦 − 𝑦𝑦 ∙ 𝑥̇𝑥
�𝑥𝑥2 + 𝑦𝑦2

 (29) 

The oil-film forces in polar coordinates can be recast in Cartesian coordinates like: 

 �
𝐹𝐹𝐷𝐷𝐷𝐷 = 𝐹𝐹𝑟𝑟 cos𝜙𝜙 − 𝐹𝐹𝑡𝑡 sin𝜙𝜙
𝐹𝐹𝐷𝐷𝐷𝐷 = 𝐹𝐹𝑟𝑟 sin𝜙𝜙 + 𝐹𝐹𝑡𝑡 cos𝜙𝜙 (30) 

 

 
Figure 2. Rolling element bearing and squeeze film damper model. 

 
Table 1. Parameters of rolling element bearing and squeeze film damper model. 

Model Notation Description Value 
Rolling 
element 
bearing  

𝐷𝐷 Pitch diameter 306 mm  
𝑑𝑑 Rolling element diameter 17 mm  
𝑍𝑍 Rolling element number 30  
𝛼𝛼 Contact angle 0  
𝑘𝑘𝑏𝑏 Contact stiffness factor 7×108 Nm-3/2 6×107 Nm-10/9 

Squeeze 
film 
damper 

𝜇𝜇 Dynamic viscosity of oil 5 mPas  
𝑅𝑅 Damper radius 180 mm  
𝐿𝐿 Damper length 42 mm  
𝑐𝑐 Damper radial clearance 0.36 mm  

 
Normal state vibration response: Vibration response of the dual-rotor system without 
any rotor fault is calculated. The rotating speed is set to a fixed value of (70, 90) Hz. The 
displacement waveform, spectrum and shaft centerline orbit of node 0 and node 15 on the 
inner rotor are in Figure 3. Due to the coupling effect of the inter-shaft bearing, both 



frequencies of the rotating speed are reflected on the same node. Node 15 is near the inter-
shaft bearing than node 0, so the spectral line of the outer shaft frequency is higher than 
the one of the inner shaft frequency, and vice versa. Besides the two main frequencies, no 
other frequency components is clear in the vibration signals. 
 

 
Figure 3. Waveform, spectrum and orbit of node 0 and node 15 on the inner rotor. 

 
Some states are considered including: (1) no gravity effect, (2) no squeeze film damper, (3) 
SFD has no centering string, (4) centering string has have the stiffness. Vibration responses 
of those states are calculated and their shaft centerline orbits of the outer race (journal of 
SFD) of support 3 and node 3 at the outer rotor are plotted in Figure 4, comparing with the 
normal state. If the gravity effect is neglected, the shaft centerline orbit will be centered on 
the origin. When there is gravity or the stiffness of the SFD centering string is weakened, 
the center of orbit declines. And if there are no SFD in the dual-rotor system, the trajectory 
of the rotor will be relatively messy, and the inner rotor frequency become more prominent 
because there are three SFDs on the inner rotor but only one on the outer rotor. It can be 
seen that the damping effect of the squeeze film damper is very significant. 
Calculate vibration responses at different rotating speed with a speed ratio of 1.5. All the 
spectra are plotted in the 3D spectrum of Figure 5. As the rotating speed increases, the 



vibration amplitude will increase significantly as the two rotational frequencies pass 
through the natural frequencies of the dual-rotor system. When the rotating speed is about 
(20, 30) and (56, 84) Hz the outer rotor has a high vibration amplitude. When the rotating 
speed is about (32, 48) and (84, 126) Hz the inner rotor has a high vibration amplitude. 
Thus it can be inferred that the first two natural frequencies is around 31 and 84 Hz. 
 

 
Figure 4. Shaft centerline orbits of the outer race 3 and node 3 at the outer rotor. 

 

 
Figure 5. 3D spectrum at different rotating speed with a speed ratio of 1.5. 

 
Models of rotor faults: Typical rotor faults include rotor unbalance, rotor misalignment, 
support looseness, and dynamic-static rub-impact. In the dual-rotor system dynamics 
model, a typical rotor fault is achieved by adding a corresponding load in the generalized 
external force vector. 



Rotor unbalance manifests as centrifugal forces of the eccentric mass. Unbalance force is 
often the main excitation of a rotor dynamic system, but large eccentric mass will cause 
excessive vibration when the rotor rotates at a high speed. The external force of the 
unbalance fault model is: 

 �
𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑚𝑚𝑑𝑑𝑑𝑑𝑒𝑒𝜔𝜔2 cos(𝜔𝜔𝜔𝜔)
𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑚𝑚𝑑𝑑𝑑𝑑𝑒𝑒𝜔𝜔2 sin(𝜔𝜔𝜔𝜔)

 (31) 

Rotor misalignment happens when two rotors connected by a coupling do not have their 
axes on the same line. The coupling will rotate as an eccentric mass at twice the rotor speed, 
adding a misalignment force to the rotor [11]. The external force of the misalignment fault 
model is: 

 �
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = −𝑚𝑚𝑐𝑐𝑐𝑐𝑒𝑒𝜔𝜔2 sin(2𝜔𝜔𝜔𝜔)
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑐𝑐𝑐𝑐𝑒𝑒𝜔𝜔2 cos(2𝜔𝜔𝜔𝜔)

 (32) 

Support looseness leads to a reduction in the stiffness of the connection and even creates 
an unconstrained gap. So the looseness fault manifests as piecewise linear stiffness of the 
foundation support [12]. The external force of the looseness fault model is: 

 𝐹𝐹𝑙𝑙𝑙𝑙 = �
(𝑘𝑘0 − 𝑘𝑘𝑙𝑙1) ∙ 𝑥𝑥𝑖𝑖 𝑥𝑥𝑖𝑖 > 𝑑𝑑𝑙𝑙
(𝑘𝑘0 − 𝑘𝑘𝑙𝑙2) ∙ 𝑥𝑥𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0

𝑘𝑘0 ∙ 𝑥𝑥𝑖𝑖 0 < 𝑥𝑥𝑖𝑖 ≤ 𝑑𝑑𝑙𝑙
 (33) 

Dynamic-static rub-impact is the friction and collision between the rotor and the stator due 
to the reduction of the clearance between them. When a rub-impact occurs, the moving part 
will come into contact with the static part and then spring back. The part with a lower 
material hardness will suffer greater wear as the rubbing progresses [13]. The external force 
of the rub-impact fault model is: 

 �
𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟(1 − 𝑑𝑑𝑟𝑟 𝑟𝑟𝑖𝑖⁄ )(−𝑦𝑦𝑖𝑖 + 𝑓𝑓 ∙ 𝑧𝑧𝑖𝑖)
𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟�1 − 𝑑𝑑𝑟𝑟 𝑟𝑟⁄ 𝑖𝑖�(−𝑧𝑧𝑖𝑖 − 𝑓𝑓 ∙ 𝑦𝑦𝑖𝑖)

𝑟𝑟𝑖𝑖 = �𝑦𝑦𝑖𝑖2 + 𝑧𝑧𝑖𝑖2 ≥ 𝑑𝑑𝑟𝑟 (34) 

 
Table 2. Parameters of rotor faults. 

Fault Parameter Description Value 
Normal 𝑒𝑒 eccentricity 0.02 mm / 0.01 mm 
Unbalance 𝑒𝑒 eccentricity 0.02 mm / 0.03 mm 
Misalignment 𝑚𝑚𝑐𝑐𝑒𝑒 eccentric mass 0.004 mmkg 

Looseness 
𝑑𝑑𝑙𝑙 loose clearance 0.05 mm 

𝑘𝑘𝑙𝑙1,𝑘𝑘𝑙𝑙2 looseness stiffness 5×108 N/m 
𝑘𝑘0 clearance stiffness 0 

Rub-impact 
𝑑𝑑𝑟𝑟 rotor-stator clearance 0.15 mm 
𝑘𝑘𝑟𝑟 contact stiffness 7.5×107 N/m 
𝑓𝑓 friction factor 0.1 

 



Fault simulation results: Adding a single typical rotor fault in the dual-rotor system, the 
vibration response of each fault above is calculated. Parameters of the rotor faults used in 
the calculation are listed in Table 2. 
The displacement waveform, spectrum and shaft centerline orbit of node 15 on the inner 
rotor at the state of unbalance fault is in Figure 6. The eccentric mass of the inner rotor disc 
increase, thus the amplitude of its rotation frequency increase. No other frequency 
component is added to the vibration signal. The shaft centerline orbit still looks smooth. 
 

 
Figure 6. Waveform, spectrum and orbit of unbalance fault. 

 
The displacement waveform, spectrum and shaft centerline orbit of node 15 on the inner 
rotor at the state of misalignment fault is in Figure 7. Due to the excitation of misalignment 
on the inner rotor, the frequency component of double the inner rotor rotation frequency 
becomes prominent. 
 

 
Figure 7. Waveform, spectrum and orbit of misalignment fault. 

 
The displacement waveform, spectrum and shaft centerline orbit of node 15 on the inner 
rotor at the state of looseness fault is in Figure 8. The loose clearance is set in the horizon 



direction, so the constraint in this direction weakens. Low frequency components below 
the rotation frequency appear in the spectrum. 
When there is no squeeze film damper, fractional frequency components under the rotation 
frequency become more abundant. The shaft centerline orbit becomes less smooth. 
Looseness will cause a certain degree of impact vibration, but the presence of SFDs 
weakens the impact. This is also an important manifestation of the shock absorption of 
SFDs. 
 

 

 
Figure 8. Waveform, spectrum and orbit of looseness fault, with or without SFD. 

 
The displacement waveform, spectrum and shaft centerline orbit of node 15 on the inner 
rotor at the state of rub-impact fault is in Figure 9. When the clearance outside the inner 
rotor disc decrease, the disc will touch the bottom first because of the gravity effect, thus 
forms a state of single point rub-impact. Contact impacts make the shape of the shaft 
centerline orbit no longer close to a circle, and the amplitude of the inner rotor rotation 
frequency becomes more prominent. There are some frequency components in both low 
and high frequency areas due to the fault. 
When there is no squeeze film damper, those low and high frequency components become 
more abundant. The shaft centerline orbit becomes less smooth. Like the situation of 



looseness, SFDs weaken the impacts caused by the rub-impact fault. 
 

 

 
Figure 9. Waveform, spectrum and orbit of rub-impact fault, with or without SFD. 

 
Figure 10 shows the situation when the unbalance fault and the looseness fault both exist, 
and the situation when the unbalance fault and the rub-impact fault both exist. The location 
and parameter of the faults are the same as single faults. The increase in the amount of 
unbalance increases the overall vibration amplitude of the rotor, thus enhances the 
nonlinear phenomena of the looseness or rub-impact fault. The fractional frequency 
components in the looseness fault and the low-frequency and high-frequency components 
in the rub-impact fault all become more significant. 
Figure 11 shows the situation when the looseness fault and the rub-impact fault both exist, 
and the location and parameter of the faults are the same as single faults. The half rotational 
frequency component is much higher than single fault state of looseness or rub-impact. It 
can be said that in the presence of looseness, the constraint of the rotor is weakened and 
the rub-impact fault will cause more pronounced nonlinear phenomenon. 
 



 

 
Figure 10. Waveform, spectrum and orbit of unbalance-looseness fault and unbalance-

rub-impact fault. 
 

 
Figure 11. Waveform, spectrum and orbit of looseness-rub-impact fault. 

 
Conclusion: This paper presents a finite element approximate model of an aero-engine 
dual-rotor system which includes nonlinear models of rolling element bearings and squeeze 
film dampers and can introduce single or multiple typical rotor faults in. The rolling 



element bearing is using a kind of nonlinear multi-body dynamic model, and the squeeze 
film damper is using the fluid-film forces model based on the cavitated short bearing theory. 
Steady-state vibration response of the dual-rotor system shows main frequency 
components of the two rotation speed. 
The typical rotor faults simulated include rotor unbalance, rotor misalignment, support 
looseness, and dynamic-static rub-impact. Those faults are introduced to the system by 
adding nonlinear forces to the generalized external force vector, and fault features are 
obtained by solving the system equation. The unbalanced fault causes an increase in the 
amplitude of the rotational frequency. The misalignment fault causes an increase in the 
amplitude of twice the rotational frequency. The looseness fault brings in fractional 
frequency components. The rub-impact fault brings in many low and high frequency 
components. SFDs could weaken the impacts caused by looseness or rub-impact. And the 
looseness fault and the rub-impact fault could enhance the nonlinear phenomenon of each 
other when they both exist. 
Many parameters could have influences on the characteristics of rotor faults, including the 
rotor parameters like mass, stiffness, damping and rotation speed, or the fault parameters 
like the location and the severity of faults. This paper does not discuss all these parameters 
in detail. But interesting result might be attained by studying fault characteristics in a 
nonlinear dual-rotor system. 
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